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PREFACE

The theory of exterior algebras was introduced by Grassmann
to study algebraically geometric problems on the linear varieties in
a projective space. But this theory has been forgotten for a long
time; E. Cartan discovered it again and applied it to the study of
differentials and their multiple integrals over a differentiable o
analytic variety. For this reason, the theory of exterior algebras
will be interesting not only for algebraists but also for analysts.

In these lectures we shall present a more general algebra called
“ Clifford algebra” associated to a quadratic form. If the quadratic
form reduces to 0, the Clifford algebra reduces to “exterior algebra™.

The applications . of ‘the theory of exterior algebras are very
wide, e.g.: theory of determinants, representation of linear variety
in a projective space using Pliicker coordinates, and the the»ry of
differential forms and their applications to many branches of
analysis, But I am sorry not to be able to describe them in detail
because of the restriction of txme.

June, 1954 ’ . . C. Chevalley
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CONVENTIONS

Throughout these lectures, we mean by a ring a ring with

‘unit element 1 (or 1’ as the case may be), and also by a homomor-

phism of such rings a homomorphism which maps unit upon unit.
A will always denote a ring which is quite arbitrary in Chap. I, and
assumed to be commutative in Chap. IT and the subsequent chapters.

By a module over A, we invariably mean a unitary module.
Thus a module over A is a set M such that

1) M has a structure of an additive group,

2) for every ae A and xe M, an element axe M called scalay

multiple is defined and we have

i) alz+y)=azx+ay,

ii) (a+8)x=ax+8x,

iif) a(ﬁx}=(aB)x',

iv) 1l-x=x.
A map of a module over A into a module over A is called linear,
if it is a homomorphism of the underlying additive groups which
commutes with every scalar multiplication by every element of A.

An algebra E over A means a module over A with an associa-

tive multiplication which makes E a ring satisfying
a(x)=(axy=x(ay) (xyeE;ael).

A homomorphism of algebras will- always mean a ring homomor-

phism which maps unit upon unit. An ideal of an algebra means

always a {wo-sided ideal. A subset S of an algebra is called a set

of genmerators of E if E is the smallest subalgebra containing S and

the unit 1 of E.

In dealing with modules or algebras over A, any element of the
basic ring A is often called a scalar. In the case of algebras, any
element of.the subalgebra A-1 is called a scalar; a scalar clearly
commutes with every element of the algebra.

vi



CHAPTER I. GRADED ALGEBRAS.

§1. Free algebras. The first basic type of algebras we want
to consider is the free algebra. Let E be an algebra over A gene-
rated by a given set of generators (x;);.7 (I: any set of indices). Let
o=(4), ,i* be a finite sequence of elements of I and put y,=
% %y The number % is called the length of . Among the “ finite
sequences ” we always admit the empty sequence oy, whose length is

0, i.e.,, a sequence with no term, and we put y,,=1. We define the '

composition of two finite sequences o=(¢y,-, 7x) and o’'=(j, -, /&) by
ao'=(ty, - ,in, J1,>» p). For oy, we define oyo=006=g0, i.€., oy is the
unit for this composition. Evidently this composition is associatives
(go’) o'"=0a(a’e’"), and we have Yoor=YeYs/.

Tueorem 1.1. Every element of E is a linear combination of the
¥o’s, o running over all finite sequences of elements of I.

Proor. Deznote by E; the module spanned by all ths y,’s. We
shall show E=E;. First we prove: .

- LemMma 11. E; #s closed under multiplication.
Proor, Let z, 2’ be two elements of E; and put

=>18s¥s, F=2.a.¥..
o o

Though these two sums seem apparently infinite, we have in fact
a,=0 and a,=0 except for a finite number of ¢’s. Then we have

ZZ’=EIaa @ Yoo o Yoo €EL;
v, 0

" the sum being finite, we have zz' ¢ E}.
- Now we return to the proof of Theorem 1.1. The module Ej is
thus a subalgebra of E, and if o=(4), y»=4; and also y,,=1. There-
fore El. containing the set of generators (x;) and 1, contains E itself,
_so that we obtain E=FE}, which proves the theorem. :
DermvitioN 1.1, If the y.’s are linearly independent over A, then
Eis called a free algebra, and the set (%i)ie1 is called a free sysiem
of generators of E.
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Existence and. uniqueness of free algebras. We first prove
the wuniqueness. For this, we shall show a more precise condition
called #universality . - An algebra F over ‘A with a system of
generators (%;);ris called universal, if given any algebra E over A
generated by a set of elements (£;);.y indexed by the same séet I,
~ there #§ a unique homomorphism @: F>E such that ¢(x;)=§; for
all 7.
THEOREM 1.2. A free algebra F with its Sfree system of genevaiors:
* 25 universal. ; :
Proor: By definition, the set {y,=x; ---x,-,.} forms a base of F

- as 4 module over A. Thus there is a linear mapping @: F—E such
that - '

1) P(ys )=t &y for ‘every o=(4, -, ix).

If o=(4,, i), o’=(j1,, 4;) are two finite sequences of I, wé have:

@ P(Je 9 )=P(Yoo)=ti; i &, '--§j1¢-=?’0’v3¢<3’«r9)-

This proves that @ is not only linear, but also -a homomorphism
F—-E. Especially putting ¢=(f) resp. o=o0y, we have @(x;)=§;
‘and @(1)=1, which prove our assertion.
: Remark that, in general, any homomdrphism @ is uniquely deter-
mined when the values @(x;) on a set of generators (x;) are gjven,
- CoroLLARY. The free algebra generated by (x)ie; is unique
“under isomorphism. More precisely, let F, F' be two free algebn& :
“with free systems of gemerators (xi)ier, (%D e respectively, and let
I and I' be equipotent. Then F and F' are isomorphic.
Proor. We may assume that I=I. By Theorem 12, we have
two homomorphisms ..

@1 F>F such that @(xi)=x]
and
@ F-F such that @'(x] )=x;

The composite mapping ¢’ o gvi FaPF maps each #x; to itself,

: 1) ¢ o¢ is defined by ¥ 6 ¢(x)=9L(e(x)).
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and by the uniqueness of homomorphism, ¢/ o @ must be the identity
in F. Similarly @o ¢/ is the identity in . Therefore- ¢ is an iso-
morphism and @'=@"1 whith proves that F and F' are isomorphic
to each other. '

Now we shall prove the existence of a free algebra, having dny
given set (%);s as its free system of generators. Let 3 be the set
of all finite sequences of elements of I. From the theory of linear .
algebra, we may assume that there exists a module M over A with
a base equipotent to 2. Let (¥, )oes be the base of M; we
introduce a structure of algebra into M. For this, we have only
define an associative multiplication for the elements of the base.
We define it by '

Yo Yo'=Yaa’ .

~ Since the composition in 2 is associative, we have the associativity:
(YedadYor =Yo(Yor Yo ). M is now a free algebra over A having
the free system of generators (X;);es.

§2. Graded algebras. Let F be the free algebra with the free
- gystem of generators (%&)ies and put y, =xi, iy (@=(i,,18)). We
shall classify the elements y, by the length of o.

Let Fj be the module spanned by the y.’s, o being of length h.
Then F is the direct sum of Fy, Fy, F5, - a8 a module:

¢)) F=Fy+F,+Fo+ -+ Fi4-
‘and evidently ) @
@ ’ Fh'F],l cFupe,

becausa the length df the composite go’ of o and o’ is equal to the
surd of the lengths of ¢ and o'.

The free algebra F=Fy+F+ - +Fs+ is a typical example of
. the following general notion of graded algebras.

DerinitioN 1.2. Let I' be an additive group. A I'-graded al;_
gebra is an algebra E which is given togeiher with a direct sum
decomposition as a module

3 | E=XF,
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where the Ey’s are submodules of E, in such a way that

4) EyEyCEyy,ie, xeEy and x' e Ey zfmp{y_xx’ €Eyiy.
By a homomorp}iz'sm of I'-graded algebra E=_i“£_r‘,E~, thto another

I'-graded algebra E' =Z‘i‘E; is mecant a homomorphism @ : E—E'
Te

of the algebras such that @ Ey) Ey,

In a I'-graded algebra E=3% E, an element belonging to Ey is
called homogencous of degree ry The z2ro element 0 of £ is homo-
geneous of ‘any degree, but each element of E other than 0 is
homogeneous of at most one degree ye I, Any element x of E is
uniquely decomposed into the sum of homggeneous elements

®) X=23%, xyekEy,
4 Yel'

where the ay’s are 0 except for a finite number of v’s. Each xy in
(5) is called the «y.component of x.

LemMma 1.2, The unit 1 is always homogencous of degree €
(0 : zero element of I').

Proor. Decompose 1 into the sum of its homogeneous compo-
nents :

1=3>ey, eyeEy.
Yel

If xge E is homogeneous of degree B eI, then we have
© Ep'a Xg=Xg* 1=; Xg-€y.

Since xg-eye Egsy, we must have xs-e; =xs and xs- ey =0 for alr
7= 0. This implies that e, is a right unit element for all homo-
geneous elements, and accordingly for all elements x=3xy in E..
Thus ¢; =1, and our assertion is proved.
CorOLLARY. Scalars are homogeneous of degree 0 (8 : zero ele-

ment of I').
£ 5 Among others, the following two special types of I'-gradations.
are of much importance: ,

i) I'-gradations where I'=Z is the additive group of integers..
In this case, we say simply “ graded ” instead of “ Z-graded ”.
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ii) I'-gradations where I is the group with two elements 0 and
1. In this case we write E=FE.+E- in place of E—E0+E1, and £
is called semi-graded.

A free algebra F=Fy+ Fi+ -+ Fs+ - can be considered as a
graded algebra with Fp={0} for all 2<Q

RemARrRk. A I'-graded algebra is not a special kind of algebras,
In fact, any algebra may be considered as a I'-graded algebra with
degree 6 for every element.

H(omogeneous subalgebras.

DersiNitioN 1.3. A submodule M of a I'-graded algebra E=3Ey
is said to be homogeneous if the homogeneous componenis of any
element of M still belong te M. This is equivalent to the condilion
that M=; (M Ey).

Tueorem 13. If a submodule M or an ideal W of a I'-graded
algebra E is generated by? homogeneous elemenis, then it is homo-
geneous.

Proor. Let M be a submodule of E spanned bx'r a set S of .
homogeneous clements and let M’ be the set of elements of M whose
homogeneous components belong to M. It is evident that S M'C M,
since S consists of homogeneous elements. We shall show that M’
is a submodule. If x=3xy and #'=3x, are in M, then y+4'=
S (#y £x}), and xy +a5e M, so that we have zx+x'e M. Also for
aeA, we have similarly axe M. Thus M’ being a submodule’
containing the generators S, we have M’ 2 M, and so M=M, which
proves that M is homogeneous.

For the case of ideals, we take the ideal % generated by a set
S of homogeneous elements. % is spanned, as a module, by all ele-
ments of the form xsy, where xe E,seSand ye E. Putting 2= x,

“y=% ys, we have

2) The word “generated by” has somewhat different meaning for the
cases of submodules and of ideals. In the former cass, a submodule M is
generated by S if every element of M is a linear combination of the elements
of S, while in the latter case, an ideal ¥ is geneﬁ(ted by S if ¥ is the smallest
ideal containing the set S. ’
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xsy=(2xy )S(Z‘.yp) 2 XySyp

‘and since (#ysyg) is homogeneous, ¥ is also spanned by the elements
%ysys which are homogeneous. Thus %, being generated as a module

by homogeneous elements, is homegeneous as was seen above.,

Let E=5 Ey be a I'-graded algebra and % a homogenzous
ideal in E. We have the direct sum decomposition of % into its
homogeneous parts:

A=31%, Ay=A N Ey. " .

Tixe quotient algebra E/% has also the structure of I"-graded algebra,
because E/A=53y (Ey /¥y ) (direct sum of submodules) and (E,/ Ay)e
CEy/Uy) < Eyey [Uysy. Therefore E/N is a I'-graded algebra and

- Bv(Ey/%y) gives its homogenedus décomposition. The canonical

homemorphism yr: E-E/N is a homi)n:mrphism not only of algebras,
but also of I’-graded algebras:

§3. Homogeneous linear mappings® Let E, B’ be two I"-graded
algebras over the same ring A4, and let A be a linear mapping of
E into F', i.e., a mapping A: E—E’ such that .

. AE+HP)=NME)+HA(Y), Max)=arn(x)
for every x,yeE; acA.

DeriniTioN 14. Let v be any element of I' ; N is caﬂed homo-
geneous of degice v if N(Ey) E, | for all yel.
} Evidently, if A: E—E’ is homogeneous of degree » and A’ : E/'—
E' is homogeneous of degree 1/, then M o A is homogeneous of degree
v/, _

A linear mapping \: E—E' can not always be decomposed into
a finite sum of homogeneous miappings as can be shown by a coun-
ter-example. But if the decomposition is possible, it is unique: it is
sufficient to prove the following:

3) This notion can be defined not &nly fof graded algebras, bit also for
*“graded modules”. But wg:shall restrict ourselvés only to the case of graded
algebras, because we use it only in this cass.

e, el

. com
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Lemma 13. Let {M}vrbe a family of linear -mappings E—E',
¥n which each \, is homogencous of degree v. I $,A\,=0 and A, (%)

=0 (x: any element in E) except for a finite number of vel, then -

=0 for all vel.

Proor. For an element xy of Ey, we have 3IA,(xy)=0, but

since A (xy) e EY,, for each vcI”, we haue Ay(xy)éo for allwel’. -

For an arbitrary xe E, let #=%* x, be the homogeneous decomposi-
tion of x them N, (x)=>A,(xy)=0, which proves that A,=0 (v el).
)

§4. Associated gradations and the main involution. Let I", I”
be additive groups and let a homomorphism 7:I'—[’ be given. To
any [-graded algebra E= Z}E—, , we associate the following /'-grada-

Ye

tion of E. For each Wef’, put

Ey= 3 By (Ey={0} if +1(¥) is empty).

YeT—I(Y)

Then obviously E—2 Ey and Ey E C:E, 3+ In this way E=

YeT
3 E; can be considered as a ['-graded algebra.

DeriNiTION 1.5, The I* -gradation E= Z‘.E~ is called the associ-
- ‘re[‘

ated I’ -gradation of E, associated to the I'-gradation E-—Z‘E—, (with
respect to ).

We shall write E instead of E if it is taken with the assoeia.ted

gradation rather than with the original I’-gradation. Obviously,
we have the

LemMa 14. Every homogeneous element, every homogeneous sub-

module, and every homogeneous ideal in E are also homogeneous

in E7.

In the special case where 1’ is the group consisting of two- ele-
ments 0 and 1, and where 7 is onto, we write Es=FE5+E°% instead

of E* =Ey+E;, and we call it the associated semi-graded algebra of
E. In that cass, the kernel 7-40) = I’ is denoted by I',, which is
a subgroup of index 2, while +-1(1)<=/[" is denoted by I’-,_Which
is a coset of I" by I', other than I's. Remark that every subgroup :

¥
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of I" of index 2 can be preassigned as I’ in some unique associated
semi-gradation. It may happen that I" has”a unique subgroup of
index 2. If it is the case, then reference to the map = can be omitted
‘without any ambiguity. For example, to every graded (i.e., Z-

graded) algebra .E=3S" Ej is associated a unique semi-graded -

h:integer

algebra ES=FE5+E%, where E5=YS) Ej ES= 2 E;. Clearly, if E

h:éven
is a semi-graded algebra, then its assoc1ated semi-gradation is

‘identical with the original semi-gradation.
Main involution. Fixing a subgroup I', I of index 2, let E=

Z‘,TE-, be a I'-graded algebra, and let Es=ES + E* be the associated
Ye

semi-gradation of E. Every element xe E can be decomposed uni-
quely into the sum ‘of its E%-component x; and its ES-component
%-: x=%s+x-. If we define a map J: E—E by
J)=x,—x- (x=x:+x-€E),
then J is one-to-one and linear, presex:ves the degree in the I'-grada-
tion of £, maps unit upon unit, and is an involution (.e., Jo J=
identity). Moreover, J preserves the multiplication. In fact, let
X=%+ +2-,9=y++y- (%+,y+ €E%; x-,y-€ E2). Then (x¥%)s=x.y.+
x-y-,(xy)-=%-y++x.y-, and so we have
Jay) =9+ +2-3-)— (x4 2:5-)
=X+ —2-) 3+ =y )=J(D](y) .
Therefore, J is_an involutive automorphism of the I'-graded
algebra E, which we call the main involution of E.
For convenience’ sake, we define the symbolical power Jwel)
of the main involution as follows

J if vel-

{identity if vel',.

Also we define the power (—1)*(¥el’) of the scalar (—1) of
- A as follows: )

-1 if wvel-

(—1)V={
‘ 1 if veP+ -
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Then we have, just as in the case of usual powers, the following
identities :

1) ]v o]v'=Jv+v/

iD (1 (=1¥=(—D»¥

iii) (W=

iv) ((=1y)y=(-D¥)

We shall denote iii) and iv) respectively by /* and by (—1)"\"
for the sake of simplicity, though no product is defined, in general - -
in I'. Any p.ower of the identity map is understood to be the
identity }nap, and any pawer of 1 is understood to be 1.

If x—va (zye Ey), then we can write

v) ](x)—-Z( 1Y zy
If I'=2Z, the addltwe group of integers, then these definitions agree
with the usual definitions of powers of an automorphism, or of an

¥

element of an algebra.

§5. Derivations. The definition of derivations in a graded
algebra given here is “somewhat different from the conventional
definition of the derivations in the ordinary algebraic systems. In
the sequel, when we speak of derivations, we understand that a
fixed subgroup I'. — I" of index 2 is given.

Now, let E, E’ be two I'-graded algebras over A and let @ be
a homomorphlsm of E into E'.

DeriniTiON 1.6. A @-derivation D of E into E' means a linear -
mapping D: E—E', homogeneous of some given degice vel’, such

that for every X,y € E,

(D)  Day)y=D(n@(n)+e( e Dy),

where J¥ is the power of the main-invelution defined above.

In the case where E=E' aud @ is the identity, D is called simply
a “derivation”, Therefore a derivation D of E is a homogeneous
linear mapping of degree », such that

@  Dx»)=D(xy+(Px) D(y)  for %, ye E

If I'=2Z, the additive group of integers, (2) is written by
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@n D(xy)=D(x)y+(-—I’)’"xD y) for xe Ex, yeE.

If the elements of E are all of degree 8 (8:zero element of I7),
then D must be of degree 0, and (2) reduces to

-3 D(xyy=D(x)y+xD(y) ,

which coincides with the ordinary ~definition of derivation. Also,
- when v belong to I, (2) reduces to (3), white if v be ong to I'-
and xe E2, (2) reduces to

-(4) D(xy)=D(x)y—x D(J’)

A linear mapping satisfying (4) is sometimes called * anti- derxvatxon v
but we do not use this terminology in these lectures.

The formula (1)‘ can be written in another form. Denote by L.
the operation of the left multiplication by x: L;y=xy. Then (1)
is equivalent to

(5) ’ Do Lx=LD(x) o ¢+L¢Uv 0° D.
In the case where E=FE’, and @ is the identity,
(6 . Do Ly=Lp +LypxoD.

Rem_érk that (5) and (6) do not contain the parameter ” y. v
LemMa 15. For every g-derivation D, we have D(1)=0.
Proor. Substituting x=y=1 in (1), we get ?

D(=D1-1)=DDe(1)+¢(J* 1) D(1), P
and since J'1=1, @(1)=1, we obtain D(1)=D(1)+D(1), which proves

D(1)=0. :

* Evidently, if D and D' are g-derivations of the same degree,
D+ D is again a ¢-derivation. Also we have

Lemma 16. If @:E—E' and @' :E'—E" are homomorphisms
and of D, DV are a @-derivation of E into E' and a ¢/-derivation of
E! into E" respeciively, then @' o D and D' o @ are (@ o @)-derivations
of E-E".

Proor. We have only to check the condition (1). By dxrect
calculation we have

e i



e

I. GRADED ALGEBRAS 11

(@' o D) (xy)=9'(D(x)) @' (P(9))+¢/(@p(J’ x))@' (D(y))
and

(D' 0 @) (x9)=D/ (@)@ (P(IN)+@ (P J)D (P(3))

and since @' o D and IV o @ are of degrees v and v’ respectively, we-
have our assertion. i
TuroreMm 14. Let D be a @-derivation of E into E', F a homa-

‘ geneous subalgebra of E, S a sel of homogeneous generators aof F,
 and let F be a homogeneous subalgebra of E'. Then if D(S)c F'

and ¢(S) C F', we have D(F) C F' and ¢(F) T F'.

Proor. The latter inclusion is evident, because @ is a homomor-
phism. The former is proved as follows. Let vFl be the set of ele-
ments x& F such that D{x) € F'. It is evident that Fj is closed under

_ addition and scalar multiplication. Also if D(x) € F' and x=3 1y,

then the D(xy)'s are the homogeneous components of D(x) and
D(xy)eF, so we obtain zye F;. Therefore Fy, is a homogeneous
submodule of F, so that xe F; implies J'xe F;.. Now for x,y e F), we :
have

D(xy)=D(x)@(y)+@(J'x)D y),

and since D(x), @(y), @(J'x), D y) all belong to F', we have xy € Fy,
which proves that F; is a subalgebra containing S. S being the set
of generators of F, we have FC F,, w}xhh proves D(F)C F',f

CoroLLArY 1. Let U and %' be homogeneous ideals of E and E'
respectively, and S be a set of homogencous generators of . If
D(S)c W, p(S) W, we have D(A) W, and p(A) CW.

Proor. Again the latter inclusion is evident. The former is
proved in a s‘milar manner as before, showing that the set

M={x|xeA, Dx)eW}

is a homogeneous ideal. :
CoroLLARY 2. Let F, S be as before. If D(S)={0}, then D(F)=
{0} : | |
Proor. In a similar manner as in the proof of Theorem 1.4, we
can show that '

i

4) Remark that this assertion holds without any /assnmptic;n on 9.
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Fy={x|xeF, D(x)=0}

is a homogeneous subalgebra, which proves F C Fj.

CoroLLARY 3. Let F, S be as before. If two @-derivations D, D'
. coincide with each other on S, then they coincide on F.

Proor. From this assumption, D and IV are of the same degree.
Then apply Corollary 2 to the derivation D—D.

It follows from this corollary that a derivation D is completely
determined if its values on the elements of a set of generators are
given.

Tueorem 15. Let E, E' be I'-graded algebras, @ a homomor-
bhism E—E', and D a @-derivation of E—~E'. Also let W and W be
homogencous ideals in E and E' respectively such that D)) = W,
and @A) <W. Under these assumptions, the induced mapping D :
E A—E'/W obtained from D is a ‘p-derivation, where  means the
tnd:sced homomorphism E/U—E'/U obtained from .

If we use the “commutative diagram > the map D and @ are
represented as follows :

E @, D - E!
o |
E/U @, D —E'/% -

where {r and Y are the canonical mappings.

5) In a diagram, let every vertex represent a $st, and let each oriented
edge represent a mapping. A direct- P ; '
ed path in a diagram represant a A
mapping which is the composition
of successive mappings assigned to o \
its edges. If, for any two vertices, &y >
any two directed paths connecting ' :
them give the 'same mapping, then 2 &',‘
the diagram is said to be commuta- & 15
tive. For example in Fig. 1, for the - : Q
vertices P and @ and the paths as a ' o
in it, the commutativity means fyo f30 f30 fi(x)=gs0 gro Zogrog o fl(x) =
- f4o g0 g30 gro grofi(x)=-- for every xe P.

-
<
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