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Preface to the Third Edition

Nine years have passed since I dispatched the second edition, and the book still
appears to be in demand. The time may be ripe for an update.

As the perhaps most conspicable extension, I describe the understanding of uni-
versal spectral fluctuations recently reached on the basis of periodic-orbit theory. To
make the presentation of those semiclassical developments selfcontained, T decided
to to underpin them by a new short chapter on classical Hamiltonian mechanics.
Inasmuch as the semiclassical theory not only draws inspiration from the nonlinear
sigma model but actually aims at constructing that model in terms of periodic orbits,
it appeared indicated to make small additions to the previous treatment within the
chapter on superanalysis.

Less voluminous but as close to my heart are additions to the chapter on level
dynamics which close previous gaps in that approach to spectral universality.

It was a pleasant duty to pay my respect to collegues in our Transregio-
Sonderforschungsbereich, Martin Zirnbauer, Alex Altland, Alan Huckleberry, and
Peter Heinzner, by including a short account of their beautiful work on nonstandard
symmetry classes.

The chapter on random matrices has not been expanded in proportion to the
development of the field but now includes an up-to-date treatment of an old topic in
algebra, Newton’s relations, to provide a background to the Riemann-Siegel looka-
like of semiclassical periodic-orbit theory.

The chapters on level clustering, localization, and dissipation are similarly pre-
served. I disciplined myself to just adding an occasional reference to recent work
and to cutting some stuff of lesser relative importance.

There was the temptation to rewrite the introduction, to no avail. Only a few
additional words here and there annouce new topics taken up in the main text. So
that chapter stands as a relic from the olden days when quantum chaos was just
beginning to form as a field.

Encouragement and help has come from Thomas Guhr, Dominique Spehner,
Martin Zirnbauer, and, as always, from Hans—Jiirgen Sommers and Marek Kus.
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viii Preface to the Third Edition

I owe special gratitude to Alex Altland, Peter Braun, Stefan Heusler, and
Sebastian Miiller. They have formed a dream team sharing search and finding, suf-
fering and joy, row and laughter.

Essen _ F. Haake
August 2009



Preface to the Second Edition

The warm reception of the first edition, as well as the tumultuous development of
the field of quantum chaos have tempted me to rewrite this book and include some
of the important progress made during the past decade.

Now we know that quantum signatures of chaos are paralleled by wave signa-
tures. Whatever is undergoing wavy space-time variations, be it sound, electro-
magnetism, or quantum amplitudes, each shows exactly the same manifestations
of chaos. The common origin is nonseparability of the pertinent wave equation;
that latter “definition” of chaos, incidentally, also applies to classical mechanics
if we see the Hamilton—Jacobi equation as the limiting case of a wave equation.
At any rate, drums, concert halls, oscillating quartz blocks, microwave and optical
oscillators, electrons moving ballistically or with impurity scattering through meso-
scopic devices all provide evidence and data for wave or quantum chaos. All of these
systems have deep analogies with billiards, much as the latter may have appeared
of no more than academic interest only a decade ago. Of course, molecular, atomic,
and nuclear spectroscopy also remain witnesses of chaos, while the chromodynamic
innards of nucleons are beginning to attract interest as methods of treatment become
available.

Of the considerable theoretical progress lately achieved, the book focuses on the
deeper statistical exploitation of level dynamics, improved control of semiclassical
periodic-orbit expansions, and superanalytic techniques for dealing with various
types of random matrices. These three fields are beginning, independently and in
conjunction, to generate an understanding of why certain spectral fluctuations in
classically nonintegrable systems are universal and why there are exceptions.

Only the rudiments of periodic-orbit theory and superanalysis appeared in the
first edition. More could not have been included here had I not enjoyed the privilege
of individual instruction on periodic-orbit theory by Jon Keating and on superanal-
ysis by Hans-Jiirgen Sommers and Yan Fyodorov. Hans—Jiirgen and Yan have even
provided their lecture notes on the subject. While giving full credit and expressing
my deep gratitude to these three colleagues, I must bear all blanie for blunders.

Reasonable limits of time and space had to be respected and have forced me to
leave out much interesting material such as chaotic scattering and the semiclassi-
cal art of getting spectra for systems with mixed phase spaces. Equally regrettably,
no justice could be done here to the wealth of experiments that have now been



X Preface to the Second Edition

performed, but I am happy to see that gap filled by my much more competent
colleague Hans-Jiirgen Stockmann.

Incomplete as the book must be, it now contains more material than fits into
a single course in quantum chaos theory. In some technical respects, it digs deeper
than general introductory courses would go. I have held on to my original inten-
tion though, to provide a self-contained presentation that might help students and
researchers to enter the field or parts thereof.

The number of co-workers and colleagues from whose knowledge and work I
could draw has increased considerably over the years. Having already mentioned
Yan Fyodorov, Jon Keating, and Hans-Jiirgen Sommers, I must also express special
gratitude to my partner and friend Marek Ku§ whose continuing help was equally
crucial. My thanks for their invaluable influence go to Sergio Albeverio, Daniel
Braun, Peter Braun, Eugene Bogomolny, Chang-qi Cao, Dominique Delande, Bruno
Eckhardt, Pierre Gaspard, Sven Gnutzmann, Peter Goetsch, Siegfried Grossmann,
Martin Gutzwiller, Gregor Hackenbroich, Alan Huckleberry, Micha Kolobov, Pavel
Kurasov, Robert Littlejohn, Nils Lehmann, Jo6rg Main, Alexander Mirlin,
Jan Mostowski, Alfredo Ozorio de Almeida, Pjotr Peplowski, Ravi Puri, Jonathan
Robbins, Kazik Rzazewski, Henning Schomerus, Carsten Seeger, Thomas Selig-
mann, Frank Steiner, Hans-Jirgen Stockmann, Jiirgen Vollmer, Joachim Weber,
Harald Wiedemann, Christian Wiele, Giinter Wunner, Dmitri Zaitsev, Kuba
Zakrzewski, Martin Zirnbauer, Marek Zukowski, Wojtek Zurek, and, last but not
at all least, Karol Zyczkowski.

In part this book is an account of research done within the Sonderforschungs-
bereich “Unordnung und Grof3e Fluktuationen” of the Deutsche Forschungsgemein-
schaft. This fact needs to be gratefully acknowledged, since coherent long-term
research of a large team of physicists and mathematicians could not be maintained
without the generous funding we have enjoyed over the years through our Sonder-
forschungsbereich.

Times do change. Like many present-day science authors I chose to pick up ISTEX
and key all changes and extensions into my little machine myself. As usually hap-
pens when learning a new language, the beginning is all effort, but one eventually
begins to enjoy the new mode of expressing oneself. I must thank Peter Gerwin-
ski, Heike Haschke, and Riidiger Oberhage for their infinite patience in getting me

going.

Essen F. Haake
July 2000



Preface to the First Edition

More than 60 years after its inception, quantum mechanics is still exerting fasci-
nation on every new generation of physicists. What began as the scandal of non-
commuting observables and complex probability amplitudes has turned out to be the
universal description of the micro-world. At no scale of energies accessible to obser-
vation have any findings emerged that suggest violation of quantum mechanics.

Lingering doubts that some people have held about the universality of quantum
mechanics have recently been resolved, at least in part. We have witnessed the
serious blow dealt to competing hidden-variable theories by experiments on cor-
relations of photon pairs. Such correlations were found to be in conflict with any
local deterministic theory as expressed rigorously by Bell’s inequalities. — Doubts
concerning the accommodation of dissipation in quantum mechanics have also been
eased, in much the same way as in classical mechanics. Quantum observables can
display effectively irreversible behavior when they are coupled to an appropriate
environmental system containing many degrees of freedom. Even in closed quan-
tum systems with relatively few degrees of freedom, behavior resembling damping
is possible, provided the system displays chaotic motion in the classical limit.

It has become clear that the relative phases of macroscopically distinguishable
states tend, in the presence of damping, to become randomized in exceedingly short
times; that remains true even when the damping is so weak that it is hardly notice-
able for quantities with a well-defined classical limit. Consequently, a superposition
(in the quantum sense) of different readings of a macroscopic measuring device
would, even if one could be prepared momentarily, escape observation due to its
practically instantaneous decay. While this behavior was conjectured early in the
history of quantum mechanics it is only recently that we have been able to see it
explicitly in rigorous solutions for specific model systems.

There are many intricacies of the classical limit of quantum mechanics. They
are by no means confined to abrupt decay processes or infinitely rapid oscillations
of probability amplitudes. The classical distinction between regular and chaotic
motion, for instance, makes itself felt in the semiclassical regime that is typically
associated with high degrees of excitation. In that regime quantum effects like the
discreteness of energy levels and interference phenomena are still discernible while
the correspondence principle suggests the onset of validity of classical mechanics.

xi



Xii Preface to the First Edition

The semiclassical world, which is intermediate between the microscopic and the
macroscopic, is the topic of this book. It will deal with certain universal modes
of behavior, both dynamical and spectral, which indicate whether their classical
counterparts are regular or chaotic. Conservative as well as dissipative systems will
be treated.

The area under consideration often carries the label “quantum chaos”. It is
a rapidly expanding one and therefore does not yet allow for a definite treatment.
The material presented reflects subjective selections. Random-matrix theory will
enjoy special emphasis. A possible alternative would have been to make current
developments in periodic-orbit theory the backbone of the text. Much as I admire
the latter theory for its beauty and its appeal to classical intuition, I do not understand
it sufficiently well that I can trust myself to do it justice. With more learning, I might
yet catch up and find out how to relate spectral fluctuations on an energy scale of
a typical level spacing to classical properties. There are other regrettable omissions.
Most notable among these may be the ionization of hydrogen atoms by microwaves,
for which convergence of theory and experiment has been achieved recently. Also
too late for inclusion is the quantum aspect of chaotic scattering, which has seen
such fine progress in the months between the completion of the manuscript and the
appearance of this book.

This book grew out of lectures given at the universities of Essen and Bochum.
Most of the problems listed at the end of each chapter have been solved by students
attending those lectures. The level aimed at was typical of a course on advanced
quantum mechanics. The book accordingly assumes the reader to have a good com-
mand of the elements of quantum mechanics and statistical mechanics, as well as
some background knowledge of classical mechanics. A little acquaintance with clas-
sical nonlinear dynamics would not do any harm either.

I could not have gone through with this project without the help of many col-
leagues and coworkers. They have posed many of the questions dealt with here and
provided most of the answers. Perhaps more importantly, they have, within the the-
ory group in Essen, sustained an atmosphere of dedication and curiosity, from which
I keep drawing knowledge and stimulus. I can only hope that my young coworkers
share my own experience of receiving more than one is able to give. T am especially
indebted to Michael Berry, Oriol Bohigas, Giulio Casati, Boris Chirikov, Barbara
Dietz, Thomas Dittrich, Mario Feingold, Shmuel Fishman, Dieter Forster, Robert
Graham, Rainer Grobe, Italo Guarneri, Klaus-Dieter Harms, Michael Hohnerbach,
Ralf Hiibner, Felix Israilev, Marek Ku$, Georg Lenz, Maciej Lewenstein, Madan
Lal Mehta, Jan Mostowski, Akhilesh Pandey, Dirk Saher, Rainer Scharf, Petr Seba,
Dima Shepelyansky, Uzy Smilansky, Hans-Jiirgen Sommers, Dan Walls, and Karol
Zyczkowski.

Angela Lahee has obliged me by smoothening out some clumsy Teutonisms and
by her careful editing of the manuscript. My secretary, Barbara Sacha, deserves a big
thank you for keying version upon version of the manuscript into her computer.

My friend and untiring critic Roy Glauber has followed this work from a distance
and provided invaluable advice. — I am grateful to Hermann Haken for his invitation
to contribute this book to his series in synergetics, and I am all the more honored



Preface to the First Edition Xiii
since it can fill but a tiny corner of Haken’s immense field. However, at least Chap. 8
does bear a strong relation to several other books in the series inasmuch as it touches
upon adiabatic-elimination techniques and quantum stochastic processes. Moreover,
that chapter represents variations on themes I learned as a young student in Stuttgart,
as part of the set of ideas which has meanwhile grown to span the range of this
series. The love of quantum mechanics was instilled in me by Hermann Haken and
his younger colleagues, most notably Wolfgang Weidlich, as they were developing
their quantum theory of the laser and thus making the first steps towards synergetics.

Essen F. Haake
January 1991



Foreword to the First Edition

The interdisciplinary field of synergetics grew out of the desire to find general prin-
ciples that govern the spontaneous formation of ordered structures out of micro-
scopic chaos. Indeed, large classes of classical and quantum systems have been
found in which the emergence of ordered structures is governed by just a few degrees
of freedom, the so-called order parameters. But then a surprise came with the obser-
vation that a few degrees of freedom may cause complicated behavior, nowadays
generally subsumed under the title “deterministic chaos” (not to be confused with
microscopic chaos, where many degrees of freedom are involved). One of the fun-
damental problems of chaos theory is the question of whether deterministic chaos
can be exhibited by quantum systems, which, at first sight, seem to show no deter-
ministic behavior at all because of the quantization rules. To be more precise, one
can formulate the question as follows: How does the transition occur from quantum
mechanical properties to classical properties showing deterministic chaos?

Fritz Haake is one of the leading scientists investigating this field and he has
contributed a number of important papers. I am therefore particularly happy that
he agreed to write a book on this fascinating field of quantum chaos. I very much
enjoyed reading the manuscript of this book, which is written in a highly lively
style, and I am sure the book will appeal to many graduate students, teachers, and
researchers in the field of physics. This book is an important addition to the Springer
Series in Synergetics.

Stuttgart H. Haken
February 1991
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