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Over the last decade the rapid, almost explosive growth in our under-
standing of structure-related function has served to emphasize the
central role that cell biology has to play in the education of students
in medicine and science. With its recent progress, cell biology has
now developed sufficiently to provide a focus in which the surrounding,
related areas of interest in biology can be integrated with those in which
attention is directed towards the molecular level. The biology of the cell
is thus beginning to be taught as a unifying topic in its own right rather
than as an appendage to courses in morphology or biochemistry. The
purpose of this text is to convey this view to students taking preliminary
courses in basic medical science.

The book is intended primarily for students who have a background
of school biology and who are taking concurrent courses in biochemistry
and physiology. As a brief, contemporary assessment of the field, it
should also provide a useful basisforlater courses in pharmacology, histo-
pathology, immunology and experimental medicine in general. However,
although the approach is clearly directed at the eukaryotic system as
typified by the cells of mammalian tissues, it will be read without diffi-
culty by students in life science who lack a strong medical bias. It is
with these students in mind that a glossary has been included.

As this book may be the only exposure a student has to the topic
of cell biology, | have, in writing it, tried to make the text accessible
to first-year university students whilst maintaining something of the
momentum and excitement that pervades the subject at the present time.
For this reason the more established aspects have often been treated
in a condensed and abbreviated manner and the bibliography has been
used to provide some indication of historical perspective. The chief
dangers of this approach are of course that the generalizations will be
too sweeping and the promise of the more recent areas of advance
will in time be shown to have been evanescent. Being aware of a danger
helps, of course, but is no guarantee that it can always be avoided.
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PART 1

Techniques in the study of
cell structure

Much of our current understanding of cellular structure and function
is very closely bound up with a proper appreciation of the strengths
and weaknesses of the available technical methods employed in their
study. It will, therefore, be instructive for us to preface our discussion
of the cell with an account of the most widely used microscopes and
their associated preparative and applied techniques.






THE MICROSCOPE

MAGNIFICATION AND RESOLUTION

In their most basic essentials all microscopes aim: (a) to magnify the
object, and (b) to display the object in greater detail. These aims are
interdependent and it is important to realize that to increase magnifica-
tion without a commensurate improvement in the degree of discernible
detail is of little advantage.

Magnification

The magnification of any optical system is dependent upon the focal
length of the lenses in the system and their mutual arrangement. It is
usually expressed as the ratio of the length of the final image to that
of the object, and for the ordinary class microscope it is usually between
x25 and x1500.

Resolution

The resolving power of a lens indicates the fineness of detail that it allows
to be seen. Thus, if one examines two small objects with a microscope
lens, provided the objects are well separated, they will be resolved as
separate entities. If, however, they are then gradually moved closer
together, a situation will eventually arise in which the two objects,
though still separate, can no longer be seen to be distinct from each
other. In this situation, only by improving the resolution (i.e. by using
a lens with better resolving power) will it again be possible to render
the two objects as separate entities (see Figure 1).
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(b) (c)

Figure 1. Resolution and magnification. A leucocyte in a blood smear photographed at increasing magnifications
with the same objective lens (x100; NA=1.32). Thus, although in Figures (a) to (c) the final magnification
is increased, the resolving power remains the same.

In (b), at a magnification of x 1150, two granules (arrowed) within the leucocyte are resolved and seen as separate
entities, while in (a), at a lower magnification of x650, although ihe lens resolves the granules, they are not
seen to be separate. In (c), where the magnification is increased to x 2250, the granules are larger than in (b)
but there is no more detail to be seen.

Increasing the magnification over (b) without increasing the resolution is thus of no advantage (i.e. it produces
‘empty magnification’).

Courtesy of J. James, Histologisch Laboratorium Amsterdam, University of Amsterdam.

Factors that determine resolution
1. Numerical aperture

When light rays pass through a specimen containing fine detail they
interfere with each other and they are variously diffracted; increasingly
fine detail increases their angles of diffraction. Since the resolving power
of a lens depends upon its ability to collect these diffracted rays, the
wider the angle of rays collected the better is the resolution.

The capacity of a lens to collect rays emerging from an object is
defined by its numerical aperture (NA), and this depends upon both
its angular aperture (u in Figure 2) and the refractive index (n) of the
medium through which the rays pass.

The relationship is expressed as:

NA =n.sinu

In any given lens, the NA (and thus the resolution) is at its best when
the cone of rays emerging from the object just fills the angular aperture.
When setting up a microscope this optimum requirement is only obtained
by careful focusing of the illumination system (see section below relating
to the substage condenser).

In the conventional light microscope the medium between the low-
power (less than x40) objective lenses and the specimen is air (i.e.



The microscope

Figure 2. The angular aperture of an objective lens.

Objective
lens ——
; 4
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Figure 3. O/l imm~=r<ian. Light rays emerging from the coverglass into air (i.e. from a dense
to a less dense medium) will be bent by refraction towards the glass. Immersion oils (such
as cedar wood oil) have the same refractive index as glass and thus refraction is much
reduced.

the refractive index, n = 1). However, for lenses of higher power, where
maximum resolution is required, the refractive index may be increased
by filling this space with a special ‘immersion’ oil. The refractive index
of the immersion oils used with glass-covered microscope slides is
optimally about 1.55. As indicated in the equation above and as shown
in Figure 3, this arrangement increases the NA and results in fewer light
rays being lost due to refraction. Resolution is thus improved.

2. Wavelength

Resolution also depends upon the wavelength of the transmitted wave
form; the smaller the wavelength the better is the resolution. It is pri-
marily for this reason that the electromagnetic lenses of the electron
microscope, which depend upon the extremely short wavelength of the
electron (0.005 nm at a 60 kV accelerating voltage), can resolve details
that are orders of magnitude smaller than those resolved by the light
microscope (see below).

The resolution limit (r)

The resolution limit of a lens (which is the converse of its resolving
power) can be defined as the minimum separation between two points



