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PREFACE

Neurobiology has never seen a more exciting time. As the most complex organ
of our body, the brain endows us the ability to sense, think, remember, and act.
Thanks to the conceptual and technical advances in recent years, the pace of dis-
covery in neurobiology is continuously accelerating. New and exciting findings
are reported every month. Traditional boundaries between molecular, cellular,
systems, and behavioral neurobiology have been broken. The integration of devel-
opmental and functional studies of the nervous system has never been stronger.
Physical scientists and engineers increasingly contribute to fundamental discov-
eries in neurobiology. Yet we are still far from a satisfying understanding of how
the brain works, and from converting this understanding into effective treatment
of brain disorders. I hope to convey the excitement of neurobiology to students, to
lay the foundation for their appreciation of this discipline, and to inspire them to
make exciting new discoveries in the coming decades.

This book is a reflection of my teaching at Stanford during the past 18 years.
My students—and the intended audience of this book—include upper division
undergraduates and beginning graduate students who wish to acquire an in-
depth knowledge and command of neurobiology. While most students reading
this book may have a biology background, some may come from physical sciences
and engineering. I have discovered that regardless of a student’s background, it is
much more effective—and much more interesting—to teach students how know-
ledge has been obtained than the current state of knowledge. That is why I have
taken this discovery-based teaching approach from lecture hall to textbook.

Each chapter follows a main storyline or several sequential storylines. These
storylines are divided by large section headings usually titled with questions that
are then answered by a series of summarizing subheadings with explanatory text
and figures. Key terms are highlighted in bold and are further explained in an
expanded glossary. The text is organized around a series of key original experi-
ments, from classic to modern, to illustrate how we have arrived at our current
state of understanding. The majority of the figures are based on those from origi-
nal papers, thereby introducing students to the primary literature. Instead of just
covering the vast number of facts that make up neurobiology in this day and age,
this book concentrates on the in-depth study of a subset of carefully chosen topics
that illustrate the discovery process and resulting principles. The selected topics
span the entire spectrum of neurobiology, from molecular and cellular to systems
and behavioral. Given the relatively small size of the book, students will be able to
study much or all of the book in a semester, allowing them to gain a broad grasp
of modern neurobiology. )

This book intentionally breaks from the traditional division of neuroscience
into molecular, cellular, systems, and developmental sections. Instead, most
chapters integrate these approaches. For example, the chapter on “Vision’ starts
with a human psychophysics experiment demonstrating that our rod photorecep-
tors can detect a single photon, as well as a physiology experiment showing the
electrical response of the rod to a single photon. Subsequent topics include
molecular events in photoreceptors, cellular and circuit properties of the retina
and the visual cortex, and systems approaches to understanding visual percep-
tion. Likewise, ‘Memory, Learning, and Synaptic Plasticity’ integrates molecular,
cellular, circuit, systems, behavioral, and theoretical approaches with the com-
mon goal of understanding what memory is and how it relates to synaptic plastic-
ity. The two chapters on development intertwine with three chapters on sensory
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and motor systems to help students appreciate the rich connections between the
development and function of the nervous system. All chapters are further linked
by abundant cross-referencing through the text. These links reinforce the notion
that topics in neurobiology form highly interconnected networks rather than a
linear sequence. Finally and importantly, Chapter 13 (‘Ways of Exploring’) is ded-
icated to key methods in neurobiology research and is extensively referenced in
all preceding chapters. Students are encouraged to study the relevant methods in
Chapter 13 when they first encounter them in Chapters 1-12.

This book would not have been possible without the help of Lubert Stryer,
my mentor, colleague, and dear friend. From inception to completion, Lubert has
provided invaluable support and advice. He has read every single chapter (often
more than once) and has always provided a balanced dose of encouragement and
criticism, from strategic planning to word choice. Lubert’s classic Biochemistry
textbook was a highlight in my own undergraduate education and has continued
to inspire me throughout this project.

I thank Howard Schulman, Kang Shen, and Tom Clandinin, who, along with
Lubert, have been my co-instructors for neurobiology courses at Stanford and
from whom I have learned a tremendous amount about science and teaching.
Students in my classes have offered valuable feedback that has improved my
teaching and has been incorporated into the book. I am highly appreciative of the
past and current members of my lab, who have taught me more than I have taught
them and whose discoveries have been constant sources of inspiration and joy. I
gratefully acknowledge the National Institutes of Health and the Howard Hughes
Medical Institute for generously supporting the research of my lab.

Although this book has a single author, it is truly the product of teamwork
with Garland Science. Denise Schanck has provided wise leadership throughout
the journey. Janet Foltin in the initial phase and Monica Toledo through most of
the project have provided much support and guidance, from obtaining highly
informative reviews of early drafts to organizing teaching and learning resources.
I am indebted to Kathleen Vickers for expert editing; her attention to detail and
demand for clarity have greatly improved my original text. I owe the illustra-
tions to Nigel Orme, whose combined artistic talent and scientific understanding
brought to life concepts from the text. Georgina Lucas’s expert page layout has
seamlessly integrated the text and figures. I also thank Michael Morales for pro-
ducing the enriching videos, and Adam Sendroff and his staff for reaching out to
the readers. Working with Garland has been a wonderful experience, and I thank
Bruce Alberts for introducing Garland to me.

Finally, I am very grateful for the support and love from my wife, Charlene
Liao, and our two daughters, Connie and Jessica. Writing this textbook has con-
sumed a large portion of my time in the past few years; indeed, the textbook has
been a significant part of our family life and has been a frequent topic of dinner
table conversation. Jessica has been my frequent sounding board for new ideas
and storylines, and I am glad that she has not minded an extra dose of neurobiol-
ogy on top of her demanding high-school courses and extracurricular activities.

I welcome feedback and critiques from students and readers!

Liqun Luo
April 2015



NOTE ON GENE AND PROTEIN NOMENCLATURE

This book mostly follows the unified convention of Molecular Biology of the Cell
6th Edition by Alberts et al. (Garland Science, 2015) for naming genes. Regardless
of species, gene names and their abbreviations are all in italics, with the first letter
in upper case and the rest of the letters in lower case. All protein names are in
roman, and their cases follow the consensus in the literature. Proteins identified
by biochemical means are usually all in lower case; proteins identified by genetic
means or by homology with other genes usually have the first letter in upper
case; protein acronyms usually are all in upper case. The space that separates a
letter and a number in full names includes a hyphen, and in abbreviated names
is omitted entirely.

The table below summarizes the official conventions for individual species and
the unified conventions that we shall use in this book.

Organism Species-Specific Convention Unified Convention Used in this
Book

Gene Protein Gene Protein
Mouse Sytl synaptotagmin | | Syt1 Synaptotagmin-1

Mecp2 MeCP2 Mecp2 MeCP2
Human MECP2 MeCP2 Mecp2 MeCP2
Caenorhabditis | unc-6 UNC-6 Unc6 Unc6
Drosophila sevenless Sevenless Sevenless Sevenless

(named after

recessive

phenotype)

Notch (named Notch Notch Notch

after dominant

mutant

phenotype)
Other Green Gfp GFP
organisms (e.g. fluorescent
jellyfish) protein (GFP)

RESOURCES FOR INSTRUCTORS AND STUDENTS

The teaching and learning resources for instructors and students are available
online. The homework platform is available to everyone, though instructors will
need to set up student access in order to use the dashboard to track student prog-
ress on assignments. The instructor’s resources on the Garland Science website
are password-protected and available only to adopting instructors. The student
resources on the Garland Science website are available to everyone. We hope
these resources will enhance student learning and make it easier for instructors to
prepare dynamic lectures and activities for the classroom.

Online Homework Platform with Instructor Dashboard
Instructors can obtain access to the online homework platform from their sales
representative or by emailing science@garland.com. Students who wish to use
the platform must purchase access and, if required for class, obtain a course link
from their instructor.

The online homework platform is designed to improve and track student per-
formance. It allows instructors to select homework assignments on specific topics
and review the performance of the entire class, as well as individual students, via
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the instructor dashboard. The user-friendly system provides a convenient way to
gauge student progress, and tailor classroom discussion, activities, and lectures
to areas that require specific remediation. The features and assignments include:

o Instructor Dashboard displays data on student performance: such as responses
to individual questions and length of time required to complete assignments.

o Tutorials explain essential or difficult concepts and are integrated with a vari-
ety of questions that assess student engagement and mastery of the material.

o Media Assessments present movies or explain complex figures from the book
and contain a set of questions that assess student understanding of the
concepts.

e Quizzes test basic reading comprehension and the retention of important ter-
minology and facts. The quizzes are composed of multiple-choice and true-
false questions.

The tutorials were created by Andrea Nicholas (University of California, Irvine)
and the quizzes were written by Casey Guenthner (Neurosciences Program PhD
student in the Luo Lab at Stanford University).

Instructor Resources

Instructor Resources are available on the Garland Science Instructor’s Resource
Site, located at www.garlandscience.com/instructors. The website provides
access not only to the teaching resources for this book but also to all other Garland
Science textbooks. Adopting instructors can obtain access to the site from their
sales representative or by emailing science@garland.com.

Art of Principles of Neurobiology

The images from the book are available in two convenient formats: PowerPoint®
and JPEG. They have been optimized for display on a computer. Figures are
searchable by figure number, by figure name, or by keywords used in the figure
legend from the book.

Figure-Integrated Lecture Outlines

The section headings, concept headings, and figures from the text have been inte-
grated into PowerPoint presentations. These will be useful for instructors who
would like a head start creating lectures for their course. Like all of our PowerPoint
presentations, the lecture outlines can be customized. For example, the content
of these presentations can be combined with videos and questions from the book
or Question Bank, in order to create unique lectures that facilitate interactive
learning.

Animations and Videos

The animations and videos that are available to students are also available on the
Instructor’s Website in two formats. The WMV-formatted movies are created for
instructors who wish to use the movies in PowerPoint presentations on Windows®
computers; the QuickTime-formatted movies are for use in PowerPoint for Apple
computers or Keynote® presentations. The movies can easily be downloaded
using the ‘download’ button on the movie preview page. The movies are related to
specific chapters and callouts to the movies are highlighted in color throughout
the textbook.

Question Bank

Written by Elizabeth Marin (Bucknell University), and Melissa Coleman
(Claremont McKenna, Pitzer, and Scripps Colleges), the Question Bank includes
avariety of question formats: multiple choice, fill-in-the-blank, true-false, match-
ing, essay, and challenging ‘thought’ questions. There are approximately 40-50
questions per chapter, and a large number of the multiple-choice questions will
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be suitable for use with personal response systems (that is, clickers). The Question
Bank provides a comprehensive sampling of questions that require the student
to reflect upon and integrate information, and can be used either directly or as
inspiration for instructors to write their own test questions.

Diploma® Test Generator Software

The questions from the Question Bank have been loaded into the Diploma Test
Generator software. The software is easy to use and can scramble questions to cre-
ate multiple tests. Questions are organized by chapter and type and can be addi-
tionally categorized by the instructor according to difficulty or subject. Existing
questions can be edited and new ones added. The Test Generator is compatible
with several course management systems, including Blackboard®.

Student Resources
The resources for students are available on the Principles of Neurobiology Student
Website, located at www.garlandscience.com/neurobio-students

Journal Club

The Journal Club recommends journal articles that complement topics in the
textbook to improve students’ critical analysis of research and to promote a bet-
ter understanding of the research process. Each Journal Club document provides
background information on the chosen paper as well as questions and discus-
sion points to stimulate in-class discussion. Answers will be provided to instruc-
tors only. The Journal Club was developed by Casey Guenthner (Neurosciences
Program PhD student in the Luo Lab at Stanford University).

Animations and Videos
There are over 40 narrated movies, covering a range of neurobiology topics, which
review key concepts and illuminate the experimental process.

Flashcards
Each chapter contains flashcards, built into the student website, that allow stu-
dents to review key terms from the text.

Glossary
The comprehensive glossary of key terms from the book is online and can be
searched or browsed.

Xi
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