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Preface

In an era of intensive competition when asset usage and plant operating efficiencies
must be maximized, unexpected downtime due to machinery failure has become more
costly and unacceptable than before. To cut operating costs and increase revenues, in-
dustries have an urgent need for prediction of fault progression and remaining lifespan
of industrial machines, processes, and systems. As such, predictive maintenance has
been actively pursued in the manufacturing industries in recent years where equip-
ment outages are forecasted, and maintenance is carried out only when necessary.
Prediction leads to improved management and hence effective usage of equipment,
and multifaceted guarantees are increasingly being given for industrial machines,
processes, products, and services, etc. To ensure successful condition-based mainte-
nance, it is necessary to detect, identify, and classify different kinds of failure modes
in the manufacturing processes as early as possible.

With the pushing need for increased longevity in machine lifetime and its early
process fault detection, intelligent diagnosis and prognosis have become an important
field of interest in engineering. For example, an engineer who mounts an acoustic
sensor onto a spindle motor would like to know when the ball bearings will be worn
outand need to be changed without having to halt the ongoing milling processes, which
decreases the industrial yield. Or a scientist working on sensor networks would like to
know which sensors are redundant during process monitoring and can be pruned off
to save operational and computational overheads. These realistic scenarios illustrate
the need for new or unified perspectives for challenges in system analysis and design
for engineering applications.

Currently, most works on Condition-Based Monitoring (CBM), Fault Detection
and Isolation (FDI), or even Structural Health Monitoring (SHM) consider solely the
integrity of independent modules, even when the complex integrated industrial pro-
cesses consist of several mutually interacting components interwoven together. Most
literature on diagnosis and prognosis is also mathematically involved, which makes it
hard for potential readers not working in this field to follow and appreciate the state-
of-art technologies. As such, a good intelligent diagnosis and prognosis architecture
should consider crosstalk to facilitate actions and decisions among the synergetic in-
tegration of composite systems simultaneously, while maintaining overall stability at
the same time. This “‘big-picture” approach will also limit the inherent intrinsic un-
certainties and variabilities within the interacting components, while suppressing any
possible extrinsic socio-techno intrusion and uncertainties from the human interface
layer.

Adding to the current literature available in this research arena, this book provides
an overview of linear systems theory and the corresponding matrix operations re-
quired for intelligent diagnosis and prognosis of industrial networked systems. With
the essential theoretical fundamentals covered, automated mathematical machineries
are developed and applied to targeted realistic engineering systems. Our results show

Xi



Xii Preface

the effectiveness of these tool sets for many time-triggered and event-triggered indus-
trial applications, which include forecasting machine tool wear in industrial cutting
machines, sensors and features reduction for industrial FDI, identification of critical
resonant modes in mechatronic systems for systems design of research and develop-
ment (R&D), probabilistic small signal stability in large-scale interconnected power
systems, discrete event command and control for military applications, etc., just to
name a few. It should be noted that these developed tool sets are highly portable, and
can be readily adopted and applied to many other engineering applications.

Outline

This book is intended primarily as a bridge between academics in universities, practic-
ing engineers in industries, and also scientists working in research institutes. The book
is carefully organized into chapters, each providing an introductory section tailored to
cover the essential background materials, followed by specific industrial applications
to realistic engineering systems and processes. To reach out to a wider audience, lin-
ear matrix operators and indices are used to formulate mathematical machineries and
provide formal decision software tools that can be readily appreciated and applied.
The book is carefully crafted into seven chapters with the following contents:

+  Chapter 1: Introduction
Intelligent diagnosis and prognosis using model-based and non-model-based
methods in current existing literature are discussed. The various application
domains in realistic industrial networked systems are also introduced.

+ Chapter 2: Vectors, Matrices, and Linear Systems
Fundamental concepts of linear algebra and linear systems are reviewed
along with eigenvalue and singular value decompositions. The usage of both
real and binary matrices for diagnosis and prognosis applications are also
discussed.

+  Chapter 3: Modal Parametric ldentification (MPI)
Proposes a Modal Parametric Identification (MPI) algorithm for fast iden-
tification of critical modal parameters in R&D of mechatronic systems. A
systems design approach with enhanced MPI is proposed for mechatronic
systems and verified with frequency responses of dual-stage actuators in
commercial hard disk drives (HDDs).

+  Chapter 4: Dominant Feature Identification (DFI)
Proposes a Dominant Feature Identification (DFI) software framework for
advanced feature selection when using inferential sensing in online moni-
toring of industrial systems and processes. A mathematical tool set which
guarantees minimized least squares error in feature reduction and clustering
is developed. The proposed techniques are verified with experiments on tool
wear prediction in industrial high speed milling machines and fault detection
in a machine fault simulator.

+ Chapter 5: Probabilistic Small-Signal Stability Assessment
Proposes analytical and numerical methods to obtain eigenvalue sensitivi-
ties with respect to non-deterministic system parameters and load models
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for large-scale interconnected power systems. A probabilistic small-signal
stability assessment method is proposed, and verified with extensive simu-
lations on the New England 39-Bus Test System.

+  Chapter 6: Discrete Event Command and Control
Proposes the use of binary matrices and algebra for command and control of
discrete event—triggered systems. A mathematically justified framework is
provided for distributed networked teams on multiple missions. This is veri-
fied with simulations and experiments on a wireless sensor network (WSN),
as well as simulation on a military ambush attack mission.

+ Chapter 7: Future Challenges
Provides conclusion and future work directions for intelligent diagnosis and
prognosis in areas of energy-efficient manufacturing, life cycle assessment,
and systems of systems architecture.

Learning Outcomes

The developed tools allow for higher level decision making and command in syner-
getic integration between several industrial processes and stages, thereby achieving
shorter time in failure and fault analysis in the entire industrial production life cy-
cle. This shortens production time while reducing failure through early identification
and detection of the key factors that can lead to potential faults. As such, engineers
and managers are empowered with the knowledge and know-how to make important
decisions and policies. They can also be used to educate fellow researchers and the
public about the advantages of various technologies.

Potential readers not working in the relevant fields can also appreciate the litera-
ture therein even without prior knowledge and exposure, and are still be able to apply
the tool sets proposed therein to address industrial problems arising from evolving
or even emerging behavior in networked systems or processes, e.g., sensor fusion,
pattern recognition, and reliability studies, etc. The mathematical machineries pro-
posed aim to analyze methodologies to make autonomous decisions that meet present
and uncertain future needs quantitatively, without compromising the ad-hoc *add-on™
flexibility of network-centered operations.

Many universities also have established programs and courses in this new field,
with cross-faculty and inter-discipline research going on in this arena as well. As such,
this book can also serve as a textbook for an intermediate to advanced module as part
of control engineering, systems reliability, diagnosis and prognosis, etc. We also hope
that the book is concise enough to be used for self-study. or as a recommended text,
for a single advanced undergraduate or postgraduate module on intelligent diagnosis
and prognosis, FDI, CBM, or SHM, etc.
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