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Preface

The real revolution in mathematical physics in the second half of twentieth century
(and in pure mathematics itself) was algebraic topology and algebraic geometry.
Meanwhile there is the Course in Mathematical Physics by W. Thirring, a large
body of monographs and textbooks for mathematicians and of monographs for
physicists on the subject, and field theorists in high-energy and particle physics are
among the experts in the field, notably E. Witten. Nevertheless, I feel it still not to
be easy for the average theoretical physicist to penetrate into the field in an
effective manner. Textbooks and monographs for mathematicians are nowadays
not easily accessible for physicists because of their purely deductive style of
presentation and often also because of their level of abstraction, and they do not
really introduce into physics applications even if they mention a number of them.
Special texts addressed to physicists, written both by mathematicians or physicists
in most cases lack a systematic introduction into the mathematical tools and rather
present them as a patchwork of recipes. This text tries an intermediate approach.
Written by a physicist, it still tries a rather systematic but more inductive intro-
duction into the mathematics by avoiding the minimalistic deductive style of a
sequence of theorems and proofs without much of commentary or even motivating
text. Although theorems are highlighted by using italics, the text in between is
considered equally important, while proofs are sketched to be spelled out as
exercises in this branch of mathematics. The text also mainly addresses students in
solid state and statistical physics rather than particle physicists by the focusses and
the choice of examples of application.

Classical analysis was largely physics driven, and mathematical physics of the
nineteens century was essentially the classical theory of ordinary and partial dif-
ferential equations. Variational calculus, since the very beginning of theoretical
mechanics a standard tool of physicists, was seen with great reservation by
mathematicians until D. Hilbert initiated its rigorous foundation by pushing for-
ward functional analysis. This marked the transition into the first half of twentieth
century, where under the influence of quantum mechanics and relativity mathe-
matical physics turned mainly into functional analysis (as for instance witnessed
by the textbooks of M. Reed and B. Simon), complemented by the theory of Lie
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groups and by tensor analysis. Physicists, nowadays more or less familiar with
these branches, still are on average mainly analytically and very little algebraically
educated, to say nothing of topology. So it could happen that for nearly sixty years
it was overlooked that not every quantum mechanical observable may be repre-
sented by an operator in Hilbert space, and only in the middle of the eighties of last
century with Berry’s phase, which is such an observable, it was realized how
polarization in an infinitely extended crystal is correctly described and that text-
books even by most renowned authors contained meaningless statements about
this question.

This author feels that all branches of theoretical physics still can expect the
strongest impacts from use of the unprecedented wealth of results of algebraic
topology and algebraic geometry of the second half of twentieth century, and to
introduce theoretical physics students into its basics is the purpose of this text. It is
still basically a text in mathematics, physics applications are included for illus-
tration and are chosen mainly from the fields the author is familiar with. There are
many important examples of application in physics left out of course. Also the
cited literature is chosen just to give some sources for further study both in
mathematics and physics. Unfortunately, this author did not find an English
translation of the marvelous Analyse Mathématique by L. Schwartz,! which he
considers (from the Russian edition) as one of the best textbooks of modern
analysis. A rather encyclopedic text addressed to physicists is that by Choquet-
Bruhat et al.,” however, a compromise between the wide scope and limitations in
space made it in places somewhat sketchy.

The order of the material in the present text is chosen such that physics
applications could be treated as early as possible without doing too much violence
to the inner logic of the mathematical building. As already said, central results are
highlighted in italics but purposely avoiding the structure of a sequence of theo-
rems. Sketches of proofs are given, if they help understanding the matter. They are
understood as exercises for the reader to spell them out in more detail. Purely
technical proofs are omitted even if they prove central issues of the theory. A
compendium is appended to the basic text for reference also of some concepts (for
instance of general algebra) used in the text but not treated. This appendix is meant
as an expanded glossary and, apart form very few exceptions, not covered by the
index.

Finally, I would like to acknowledge many suggestions for improvement and
corrections by people from the Springer-Verlag.

Dresden, May 2010 Helmut Eschrig

! Schwartz, L.: Analyse Mathématique. Hermann, Paris (1967).

% Choquet-Bruhat, Y., de Witt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics,
Elsevier, Amsterdam, vol. I (1982), vol. II (1989).



Basic notations

Sets A, B, .., X, Y, ... are subjects of the axioms of set theory. A = {x| P(x)}
denotes the family of elements x having the property P; if the elements x are
members of a set X, x € X, then the above family is a set, a subset (part) of the set
X: A C X. Xisasuperset of A, X D A. C, D will always be used to allow equality.
A proper subset (superset) would be denoted by A C X(X 2 A). Union, intersection
and complement of A relative to X have their usual meaning. The product of n sets
is in the usual manner the set of ordered n-tuples of elements, one of each factor.

Set and space as well as subset and part are used synonymously. Depending on
context the elements of a space may be called points, n-tuples, vectors, functions,
operators, or something else. Mapping and function are also used synonymously.
A function f from the set A into the set B is denoted f : A — B : x+y. It maps
each point x € A uniquely to some point y = f(x) € B. A is the domain
of f and f(A) = {f(x)|x € A} C B is the range of f; if U C A, then f(U) =
{f(x)|x € U}is the image of U under f. The inverse image or preimage U =
f~Y(V) C A of V C B under fis the set f(U) = {x|f(x) € V}. V need not be a
subset of the range f(A); f~' (V) may be empty. Depending on context, f may be
called real, complex, vector-valued, function-valued, operator-valued, ...

The function f: A — B is called surjective or onto, if f(A) = B. It is called
injective or one-one, if for each y € f(A), f~'({y})) =f'(y) consists of a single
point of A. In this case the inverse function f 1. f(A) - Aexists. A surjective and
injective function is bijective or onto and one-one. If a bijection between A and
B exists then the two sets have the same cardinality. A set is countable if it has the
cardinality of the set of natural numbers or of one of its subsets.

The identity mapping f : A — A : x—x is denoted by Id,. Extensions and
restrictions of f are defined in the usual manner by extensions or restrictions of the
domain. The restriction of f: A — Bto A’ C A is denoted by f|,,. If f: A — B and
g : B> C, then the composite mapping is denoted by gof:A — C:
x— g(f(x)).

The monoid of natural numbers (non-negative integers, 0 included) is denoted
by N. The ring of integers is denoted by Z, sometimes the notation N = Z, is
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used. The field of rational numbers is denoted by Q, that of real numbers is

denoted by R and that of complex numbers by C. R is the non-negative ray of R.
The symbol = means ‘implies’, and < means ‘is equivalent to’. ‘Iff’

abbreviates ‘if and only if’ (that is, <), and [1 denotes the end of a proof.
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