

Optofluidics, Sensors and Actuators in Microstructured Optical Fibers

Edited by Stavros Pissadakis and Stefano Selleri

Woodhead Publishing Series in Electronic and Optical Materials: Number 79

Optofluidics, Sensors and Actuators in Microstructured Optical Fibers

Edited by

Stavros Pissadakis and Stefano Selleri

Woodhead Publishing is an imprint of Elsevier 80 High Street, Sawston, Cambridge, CB22 3HJ, UK 225 Wyman Street, Waltham, MA 02451, USA Langford Lane, Kidlington, OX5 1GB, UK

Copyright © 2015 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier website at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2015931794

ISBN 978-1-78242-329-4 (print) ISBN 978-1-78242-347-8 (online)

For information on all Woodhead Publishing publications visit our website at http://store.elsevier.com/

Optofluidics, Sensors and Actuators in Microstructured Optical Fibers

Related titles

Fundamentals of femtosecond optics (ISBN 978-1-78242-128-3)

Modeling, characterization and production of nanomaterials: Electronics, photonics and energy applications (ISBN 978-1-78242-228-0)

Optical biomimetics: Materials and applications (ISBN 978-1-84569-802-7)

List of contributors

- **A. Argyros** Institute of Photonics and Optical Science (IPOS), The University of Sydney, NSW, Australia
- F. Berghmans Vrije Universiteit Brussel (VUB), Brussels, Belgium
- A. Candiani University of Parma, Parma, Italy
- P. Christodoulides Cyprus University of Technology, Limassol, Cyprus
- M. Consales University of Sannio, Benevento, Italy
- A. Cucinotta University of Parma, Parma, Italy
- A. Cusano University of Sannio, Benevento, Italy
- A. Cutolo University of Sannio, Benevento, Italy
- E. Davies Cyprus University of Technology, Limassol, Cyprus
- **F. Dias** University College Dublin, Dublin, Ireland; Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan, Cachan, France
- S. Ertman Warsaw University of Technology, Warsaw, Poland
- **S.C. Fleming** Institute of Photonics and Optical Science (IPOS), The University of Sydney, NSW, Australia
- **G.A. Florides** Cyprus University of Technology, Limassol, Cyprus
- T. Geernaert Vrije Universiteit Brussel (VUB), Brussels, Belgium
- K. Kalli Cyprus University of Technology, Limassol, Cyprus
- **I. Konidakis** Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion, Greece
- **E.E. Kriezis** Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- **B.T. Kuhlmey** Institute of Photonics and Optical Science (IPOS), The University of Sydney, NSW, Australia
- J. Li Genie Physique, Ecole Polytechnique de Montreal, Montreal, QC, Canada

List of contributors

- **G.D. Peng** School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, NSW, Australia
- M. Pisco University of Sannio, Benevento, Italy
- **A. Pitilakis** Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- H. Qu Genie Physique, Ecole Polytechnique de Montreal, Montreal, QC, Canada
- **G. Rajan** School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, NSW, Australia
- K.A. Rutkowska Warsaw University of Technology, Warsaw, Poland
- M. Skorobogatiy Genie Physique, Ecole Polytechnique de Montreal, Montreal, QC, Canada
- C. Sonnenfeld Vrije Universiteit Brussel (VUB), Brussels, Belgium
- S. Sulejmani Vrije Universiteit Brussel (VUB), Brussels, Belgium
- H. Thienpont Vrije Universiteit Brussel (VUB), Brussels, Belgium
- **A. Tuniz** Institute of Photonics and Optical Science (IPOS), The University of Sydney, NSW, Australia
- T.R. Woliński Warsaw University of Technology, Warsaw, Poland
- **D.C. Zografopoulos** Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy

Woodhead Publishing Series in Electronic and Optical Materials

- Circuit analysis
 - J. E. Whitehouse
- 2 Signal processing in electronic communications: For engineers and mathematicians M. J. Chapman, D. P. Goodall and N. C. Steele
- 3 Pattern recognition and image processing
 - D. Luo
- 4 Digital filters and signal processing in electronic engineering: Theory, applications, architecture, code
 - S. M. Bozic and R. J. Chance
- 5 Cable engineering for local area networks
 - B. J. Elliott
- 6 Designing a structured cabling system to ISO 11801: Cross-referenced to European CENELEC and American Standards

Second edition

B. J. Elliott

- 7 Microscopy techniques for materials science
 - A. Clarke and C. Eberhardt
- 8 Materials for energy conversion devices
 - Edited by C. C. Sorrell, J. Nowotny and S. Sugihara
- 9 Digital image processing: Mathematical and computational methods

Second edition

- J. M. Blackledge
- 10 Nanolithography and patterning techniques in microelectronics
 - Edited by D. Bucknall
- 11 Digital signal processing: Mathematical and computational methods, software development and applications

Second edition

- J. M. Blackledge
- 12 Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications
 - Edited by Z.-G. Ye
- 13 Materials for fuel cells
 - Edited by M. Gasik
- 14 Solid-state hydrogen storage: Materials and chemistry Edited by G. Walker
- 15 Laser cooling of solids
 - S. V. Petrushkin and V. V. Samartsev

16 Polymer electrolytes: Fundamentals and applications

Edited by C. A. C. Sequeira and D. A. F. Santos

17 Advanced piezoelectric materials: Science and technology Edited by K. Uchino

18 Optical switches: Materials and design

Edited by S. J. Chua and B. Li

- 19 Advanced adhesives in electronics: Materials, properties and applications Edited by M. O. Alam and C. Bailey
- 20 Thin film growth: Physics, materials science and applications Edited by Z. Cao
- 21 Electromigration in thin films and electronic devices: Materials and reliability Edited by C.-U. Kim
- 22 In situ characterization of thin film growth

Edited by G. Koster and G. Rijnders

23 Silicon-germanium (SiGe) nanostructures: Production, properties and applications in electronics

Edited by Y. Shiraki and N. Usami

24 High-temperature superconductors

Edited by X. G. Qiu
25 Introduction to the physics of nanoelec

25 Introduction to the physics of nanoelectronics S. G. Tan and M. B. A. Jalil

- 26 **Printed films: Materials science and applications in sensors, electronics and photonics** *Edited by M. Prudenziati and J. Hormadaly*
- 27 Laser growth and processing of photonic devices Edited by N. A. Vainos
- 28 Quantum optics with semiconductor nanostructures Edited by F. Jahnke
- 29 Ultrasonic transducers: Materials and design for sensors, actuators and medical applications

Edited by K. Nakamura

- 30 Waste electrical and electronic equipment (WEEE) handbook Edited by V. Goodship and A. Stevels
- 31 Applications of ATILA FEM software to smart materials: Case studies in designing devices

Edited by K. Uchino and J.-C. Debus

32 MEMS for automotive and aerospace applications Edited by M. Kraft and N. M. White

33 Semiconductor lasers: Fundamentals and applications Edited by A. Baranov and E. Tournie

- 34 Handbook of terahertz technology for imaging, sensing and communications Edited by D. Saeedkia
- 35 Handbook of solid-state lasers: Materials, systems and applications Edited by B. Denker and E. Shklovsky
- 36 Organic light-emitting diodes (OLEDs): Materials, devices and applications Edited by A. Buckley
- 37 Lasers for medical applications: Diagnostics, therapy and surgery Edited by H. Jelínková
- 38 Semiconductor gas sensors
 Edited by R. Jaaniso and O. K. Tan

39 Handbook of organic materials for optical and (opto)electronic devices: Properties and applications

Edited by O. Ostroverkhova

40 Metallic films for electronic, optical and magnetic applications: Structure, processing and properties

Edited by K. Barmak and K. Coffey

41 Handbook of laser welding technologies

Edited by S. Katayama

42 Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems

Edited by M. Feldman

43 Laser spectroscopy for sensing: Fundamentals, techniques and applications Edited by M. Baudelet

44 Chalcogenide glasses: Preparation, properties and applications Edited by J.-L. Adam and X. Zhang

45 Handbook of MEMS for wireless and mobile applications

Edited by D. Uttamchandani

46 Subsea optics and imaging

Edited by J. Watson and O. Zielinski

47 Carbon nanotubes and graphene for photonic applications
Edited by S. Yamashita, Y. Saito and J. H. Choi

48 Optical biomimetics: Materials and applications

Edited by M. Large

49 Optical thin films and coatings

Edited by A. Piegari and F. Flory

50 Computer design of diffractive optics

Edited by V. A. Soifer

51 Smart sensors and MEMS: Intelligent devices and microsystems for industrial applications

Edited by S. Nihtianov and A. Luque

52 Fundamentals of femtosecond optics

S. A. Kozlov and V. V. Samartsev

53 Nanostructured semiconductor oxides for the next generation of electronics and functional devices: Properties and applications
S. Zhuiykov

54 Nitride semiconductor light-emitting diodes (LEDs): Materials, technologies and applications

Edited by J. J. Huang, H. C. Kuo and S. C. Shen

55 Sensor technologies for civil infrastructures

Volume 1: Sensing hardware and data collection methods for performance assessment

Edited by M. Wang, J. Lynch and H. Sohn

56 Sensor technologies for civil infrastructures

Volume 2: Applications in structural health monitoring

Edited by M. Wang, J. Lynch and H. Sohn

57 Graphene: Properties, preparation, characterisation and devices Edited by V. Skákalová and A. B. Kaiser

Cilican on insulator (COI) technology

58 Silicon-on-insulator (SOI) technology Edited by O. Kononchuk and B.-Y. Nguyen 59 Biological identification: DNA amplification and sequencing, optical sensing, labon-chip and portable systems

Edited by R. P. Schaudies

60 High performance silicon imaging: Fundamentals and applications of CMOS and CCD sensors

Edited by D. Durini

Nanosensors for chemical and biological applications: Sensing with nanotubes, nanowires and nanoparticles

Edited by K. C. Honeychurch

62 Composite magnetoelectrics: Materials, structures, and applications G. Srinivasan, S. Priya and N. Sun

63 Quantum information processing with diamond: Principles and applications Edited by S. Prawer and I. Aharonovich

64 Advances in non-volatile memory and storage technology Edited by Y. Nishi

65 Laser surface engineering: Processes and applications

Edited by J. Lawrence, C. Dowding, D. Waugh and J. Griffiths

66 Power ultrasonics: Applications of high-intensity ultrasound Edited by J. A. Gallego-Juárez and K. F. Graff

67 Advances in delay-tolerant networks (DTNs): Architectures, routing and challenges

Edited by J. J. P. C. Rodrigues

68 Handbook of flexible organic electronics: Materials, manufacturing and applications Edited by S. Logothetidis

69 Machine-to-machine (M2M) communications: Architecture, performance and applications

Edited by C. Anton-Haro and M. Dohler

70 Ecological design of smart home networks: Technologies, social impact and sustainability

Edited by N. Saito and D. Menga

71 Industrial tomography: Systems and applications Edited by M. Wang

72 Vehicular communications and networks: Architectures, protocols, operation and deployment

Edited by W. Chen

74

73 Modeling, characterization and production of nanomaterials: Electronics, photonics and energy applications

Edited by V. Tewary and Y. Zhang

Reliability characterisation of electrical and electronic systems Edited by J. Swingler

75 Handbook of industrial wireless sensor networks: Monitoring, control and automation

Edited by R. Budampati S. Kolavennu

76 Epitaxial growth of complex metal oxides Edited by G. Koster, M. Huijben and G. Rijnders

77 Semiconductor nanowires: Materials, synthesis, characterization and applications Edited by J. Arbiol and Q. Xiong 78 Superconductors in the power grid Edited by C. Rey

82

- 79 Optofluidics, sensors and actuators in microstructured optical fibers *Edited by S. Pissadakis and S. Selleri*
- 80 Magnetic nano- and microwires: design, synthesis, properties and applications Edited by M. Vázquez
- 81 Robust design of microelectronic assemblies against mechanical shock, temperature and moisture

 E-H. Wong and Y-W. Mai
 - Biomimetic technologies: Principles and applications Edited by T. D. Ngo
- 83 Directed self-assembly of block co-polymers for nano-manufacturing Edited by Gronheid and P. Nealey

Preface

The invention of the Photonic Crystal Fiber (PCF) was a cornerstone demonstration, inaugurating the field of Microstructured Optical Fibers (MOFs), where light confinement into the fiber core was departed from the traditional total internal reflection mechanism. The guiding mode confinement within a microstructured optical fiber core by employing mechanisms such as the modified total internal reflection, the antiresonant guidance, or the photonic band gap localization imparted new optical characteristics to those new fibers not being available before. Since then, several research groups spanning all over the world have directed their experimental and theoretical efforts into this rapidly growing field, illustrating new light confinement and propagation effects and exotic device designs. In addition, the hollow structure of MOFs naturally pushed the integration of fluidic functionalities into the fiber itself. Thus, numerous scientific and technical challenges have emerged since the early days of the establishment of the microstructured optical fibers field, indicatively related to the tailoring of the optical mode guiding characteristics, to the implementation of standard processing procedures (tapering, splicing, grating recording, etc.) into the MOF fashion, and to the investigation and potential exploitation of fluidic actuation into the MOFs/PCFs capillaries. During the last twenty years the field of PCFs and MOFs has been massively grown, new fiber types have been presented, and disruptive photonic devices have been demonstrated, while the new insights into the field are constantly augmented. Moreover, the technology of PCFs and MOFs has been commercialized through the deployment of broadband super-continuum sources and the development of high efficient and power fiber lasers. In parallel, the research carried out within the field of PCFs and MOFs has been largely interconnected with other photonic fields, such as those of Optofluidics, Imaging, Metrology, and Optical Sensing as well as with other nonphotonic fields such as those of Biology, Nanomaterials, and Chemistry, leading to the development of device designs with novel functionalities and/or improved performance. The last statement that there are constantly new advancements into the field of MOFs/PCFs, while attracting significant attention from both the academic and industrial photonic communities.

The book Optofluidics, Sensors and Actuators in Microstructured Optical Fibres reviews and updates recent advances in the vibrant field of PCF and MOF devices, focusing on fabrication methods and materials as well as related applications. The progress undergone within the field during the last few years spans beyond the pure photonic aspect, wherein new materials and processing/infiltration methods prompt the implementation of the "Lab-in-a-Fiber" protocol, where the guiding modes localized

with PCFs and MOFs are used for probing (or even inducing/catalyzing) biological, chemical, or physical actuations occurring within the MOFs/PCFs capillaries, opening new horizons for them into high socioeconomical impact application fields. In this volume there are 10 chapters authored by high caliber research groups working in the field of PCFs and MOFs photonic devices, covering the thematic aspects discussed above, while being analyzed as follows.

In Chapter 1 K. Kalli and coauthors present a mathematical model for the flow along a microchannel also accounting for heat transfer and provide numerical results for given flow and heat configurations along single or multiple microchannel fibers.

In Chapter 2 A. Argyros and coauthors explore fabrication approaches and fiber drawing methods as potential techniques for metamaterial fabrication. Specific types of drawn metamaterial with designed electric and magnetic responses are discussed in more detail with a further emphasis on hyperlenses that beat the diffraction limit.

In Chapter 3 E. Kriezis and coauthors investigate the natural possibility for infiltrating fiber capillaries with fluid materials, like liquid crystals, in order to introduce a means for dynamic control by electro-optical addressing, in the context of switching applications. In particular they present design and performance of three switching elements, namely a single-polarization switch, a complete polarization controller, and a dual-core polarization splitter.

In Chapter 4 M. Pisco and coauthors present interesting results on the layering of carbon nanotubes into the capillaries of MOFs, their corresponding waveguiding behavior, and finally their chemosensing response to organic substances and solvents.

In Chapter 5 I. Konidakis reviews recent investigations on the infiltration of silica glass PCFs with high refractive index soft glasses for developing photonic band gap guidance fibers and studying light propagation, plasmonic absorption, and glass transition effects in those.

In Chapter 6 H. Thienpont and coauthors deal with optical fiber sensors based on fiber Bragg gratings that have evolved into one of the most mature fiber sensor technologies, combining all the advantages of optical fiber sensors with excellent resistance to fatigue at high loads, thus being the most successful approach for structural health monitoring applications.

In Chapter 7 T. Wolinski and coauthors demonstrate features of photonic liquid crystal fibers used for dynamically controlled and tunable electromagnetic field sensors. Considering the fiber as a matrix of parallel waveguide channels, when optical nonlinearity is taken into account, spatial light localization and delocalization can be obtained, paving the way not only for all-optical sensing but also for switching.

In Chapter 8 G. Rajan and G.D. Peng present an overview of the recent progress in the development of polymer optical fiber Bragg grating sensors, including polymer microstructured FBGs, polymer microfiber Bragg gratings, and grating arrays. They discuss some of the recent developments in this area, such as accelerometers, fast-response humidity sensors, force, and pressure measurements.

In Chapter 9 A. Cucinotta and A. Candiani explore a novel DNA photonic-sensing approach based on peptide nucleic acids functionalized microstructured fibers. By employing Bragg gratings, the signal is monitored in reflection mode, allowing the

Preface xix

use of the fiber itself as a probe. The detection of DNA chains of great relevance for the medical and food industries is reported.

In Chapter 10 Hang Qu and coauthors demonstrate new designs for photonic band gap and Bragg fibers for liquid refractometry, analyze the protocols of detection, and utilize those specialty fibers for analytes sensing.

From the above presentation of the content of the chapters the academic audience of this volume can be easily drawn. This audience is thematically diverse, covering scientists from optics and photonics, optical fiber sensors, materials science, biosensing, and instrumentation; also, scientists from the industrial sector (mainly the optical fiber sensor sector) may find hybrid PCF and MOF components and fabrication methods presented herein useful for their devices under development. In addition, this book can be equally valuable for young postdoctoral researchers and doctorate and Msc students for obtaining a niche update on related technologies developed in PCFs and MOFs and being familiarized with infiltration techniques and sensing protocols.

Both editors would like to acknowledge Elsevier Publishing services for their help in organizing and editing this book, and especially Laura Pugh, Anneka Hess, Josh Bennett, Adam Hooper, and Poulouse Joseph for their continuous help. Also, a warm acknowledgment is directed to our scientific colleagues who work immensely hard at producing the high quality scientific results as presented in this book. Finally, Stavros and Stefano would like to deeply thank all of the authors who contributed their high impact scientific work into this new volume, rendering a final result of the highest quality possible.

Stavros Pissadakis and Stefano Selleri