ADVANCES IN

Immunology

1969

ADVANCES IN

Immunology

EDITED BY

F. J. DIXON, JR.

Division of Experimental Pathology Scripps Clinic and Research Foundation La Jolla, California HENRY G. KUNKEL

The Rockefeller University New York, New York

1969

New York and London

COPYRIGHT © 1969, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED

NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM,
BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY
OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM
THE PUBLISHERS.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. Berkeley Square House, London W1X6BA

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 61-17057

ADVANCES IN

Immunology

and substitution to the second and an experience of the second second second

LIST OF CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors' contributions begin.

- BARUJ BENACERRAF, Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, California (31)
- Ivor N. Brown, Division of Parasitology, National Institute for Medical Research, London, England (267)
- ROBERT R. DOURMASHKIN, National Institute for Medical Research and Imperial Cancer Research Fund Laboratories, Mill Hill, London, England (75)
- N. MICHAEL GREEN, National Institute for Medical Research, Mill Hill, London, England (1)
- GÖRAN HOLM, Department of Immunology, The Wenner-Gren Institute, University of Stockholm, Stockholm, Sweden (117)
- JOHN H. HUMPHREY, National Institute for Medical Research and Imperial Cancer Research Fund Laboratories, Mill Hill, London, England (75)
- H. S. LAWRENCE, Infectious Disease and Immunology Division, Department of Medicine, New York University School of Medicine, New York, New York (195)
- Hugh O. McDevitt,* Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (31)
- Peter Perlmann, Department of Immunology, The Wenner-Gren Institute, University of Stockholm, Stockholm, Sweden (117)
- * Present address: Division of Immunology, School of Medicine, Stanford University Medical Center, Stanford, California.

PREFACE

The diversity of fields in which exponents of immunology may be found continues to surprise even its most enthusiastic adherents. It is not just the exquisite sensitivity and precision of immunological techniques that have served as the impetus for this diffusion. More significant appears to be the recognition of the broad biological impact of the relevant events that precede and follow an immune stimulus. Volume 11 exhibits such diversity unusually well, with physicist to parasitologist represented. The volume also includes three chapters by English scientists illustrating once again the continuing strong contribution of this group to immunology.

The first chapter deals with the exciting contributions of electron microscopy to the analysis of antibody molecules. Dr. Green initiated the use of small bivalent haptenes to link antibody molecules which has proven so successful in their characterization. The concept of a three-armed molecule with a flexible hinge region is well documented for γG globulin through the surprisingly clear electron micrographs obtained by this procedure. The ameboid appearance of γM molecules is most esthetically satisfying.

Dr. McDevitt and Dr. Benacerraf review the recent important findings concerning "immune response genes" in the second chapter. The fact that genetic factors are involved in the response to antigenic stimulus has long been known. However, the credit for establishing this on a firm scientific basis in terms of modern genetics must be given to the authors of this chapter. The use of synthetic polypeptide antigens played a major role in elucidating the multiple genes which are described. The intriguing question of at what level in the immune response these genes act remains to be determined. It appears clear that they do not represent the structural genes for the antibody molecule.

The third chapter has been contributed by Dr. Humphrey and Dr. Dourmashkin and deals with that most important of all complement questions, the terminal phase of cellular injury. Their most elegant electron microscope pictures of the holes in the cell membrane produced by complement have intrigued all immunologists. Considerable progress in the understanding of the underlying mechanism involved has been gained although the final answer is not yet in. Is an enzyme attacking lipid

viii PREFACE

moieties in the membrane primarily involved? Many unpublished studies of the authors relating to these questions are included in this fascinating review.

The fourth chapter by Dr. Perlmann and Dr. Holm deals with the complex problem of different types of cytotoxic effects of lymphoid cells. These outstanding workers in the field have managed to present a cohesive picture of the various effects on target cells. The role of "nonspecific" factors is particularly well clarified. The interrelationships among contact lysis, release of pharmacologically active substances, and the terminal components of the complement system are given special consideration. There is little question that significant developments concerning *in vivo* events will stem from these *in vitro* findings.

In another chapter Dr. H. S. Lawrence reviews the extensive and confusing literature on various factors involved in cellular immunity. Transfer factor, which he first described, is placed in perspective with the various substances under active current investigation in the guinea pig. This is a very enlightening review of an area of immunology from which much will be heard in the future. The methodology has been partially worked out for obtaining transfer factor, as well as some of the other materials, in sufficient purity for chemical analysis, and further results in this area are awaited with great interest. The assay systems remain difficult but the shift to *in vitro* systems has been a major achievement.

The last chapter by Dr. Ivor Brown deals with immunity in malaria, an old subject that has suddenly become of considerable current interest. New methods for the study of the relevant antibodies and a new appreciation for a role for cell-mediated immunity are responsible for this development. The very diverse contributions to this subject present unusual difficulties for a reviewer. However, a clear and interesting summary of the subject has emerged which should prove of considerable value as a reference for all immunologists.

The complete cooperation of the publishers in all aspects of the work involved in the production of Volume 11 is gratefully acknowledged.

H. G. KUNKEL F. J. DIXON

Contents of Previous Volumes

Volume 1

Transplantation Immunity and Tolerance
M. Hašek, A. Lengerová, and T. Hraba

Immunological Tolerance of Nonliving Antigens
RICHARD T. SMITH

Functions of the Complement System
ABRAHAM G. OSLER

In Vitro Studies of the Antibody Response
ABRAM B. STAVITSKY

Duration of Immunity in Virus Diseases
J. H. HALE

Fate and Biological Action of Antigen-Antibody Complexes
WILLIAM O. WEIGLE

P. G. H. GELL AND B. BENACERRAF

The Antigenic Structure of Tumors
P. A. GORER

AUTHOR INDEX-SUBJECT INDEX

Volume 2

Immunologic Specificity and Molecular Structure Fred Karush

Heterogeneity of γ-Globulins JOHN L. FAHEY

The Immunological Significance of the Thymus
J. F. A. P. MILLER, A. H. E. MARSHALL, AND R. G. WHITE

Cellular Genetics of Immune Responses G. J. V. Nossal

Antibody Production by Transferred Cells
CHARLES G. COCHRANE AND FRANK J. DIXON

Phagocytosis
DERRICK ROWLEY

Antigen-Antibody Reactions in Helminth Infections E. J. L. Soulsby

Embryological Development of Antigens REED A. FLICKINGER

AUTHOR INDEX-SUBJECT INDEX

Volume 3

In Vitro Studies of the Mechanism of Anaphylaxis and accompand K. Frank Austen and John H. Humphrey (1986) (1986)

The Role of Humoral Antibody in the Homograft Reaction
CHANDLER A. STETSON

Immune Adherence D. S. Nelson

Reaginic Antibodies

D. R. Stanworth

Nature of Retained Antigen and Its Role in Immune Mechanisms
Dan H. Campbell and Justine S. Garvey

W. H. Stone and M. R. Irwin

Heterophile Antigens and Their Significance in the
Host-Parasite Relationship

C. R. JENKIN

AUTHOR INDEX-SUBJECT INDEX

Volume 4

Ontogeny and Phylogeny of Adoptive Immunity
ROBERT A. GOOD AND BEN W. PAPERMASTER

Cellular Reactions in Infection

EMANUEL SUTER AND HANSRUEDY RAMSEIER

Ultrastructure of Immunologic Processes
JOSEPH D. FELDMAN

Cell Wall Antigens of Gram-Positive Bacteria
MACLYN McCarty and Stephen I. Morse

Structure and Biological Activity of Immunoglobulins Sydney Cohen and Rodney R. Porter

Autoantibodies and Disease

H. G. KUNKEL AND E. M. TAN

Effect of Bacteria and Bacterial Products on Antibody Response I. Munoz

AUTHOR INDEX-SUBJECT INDEX

Volume 5

Natural Antibodies and the Immune Response STEPHEN V. BOYDEN

Immunological Studies with Synthetic Polypeptides MICHAEL SELA

Experimental Allergic Encephalomyelitis and Autoimmune Disease PHILIP Y. PATERSON

The Immunology of Insulin

C. G. POPE

Tissue-Specific Antigens D. C. Dumonde

AUTHOR INDEX-SUBJECT INDEX

Volume 6

Experimental Glomerulonephritis: Immunological Events and Pathogenetic Mechanisms

EMIL R. UNANUE AND FRANK J. DIXON

Chemical Suppression of Adaptive Immunity ANN E. GABRIELSON AND ROBERT A. GOOD

Nucleic Acids as Antigens OTTO J. PLESCIA AND WERNER BRAUN

In Vitro Studies of Immunological Responses of Lymphoid Cells RICHARD W. DUTTON

Developmental Aspects of Immunity JAROSLAV ŠTERZL AND ARTHUR M. SILVERSTEIN

Anti-antibodies

' PHILIP G. H. GELL AND ANDREW S. KELUS

Conglutinin and Immunoconglutinins

P. J. LACHMANN

AUTHOR INDEX-SUBJECT INDEX

Volume 7

Structure and Biological Properties of Immunoglobulins
SYDNEY COHEN AND CESAR MILSTEIN

Genetics of Immunoglobulins in the Mouse
MICHAEL POTTER AND ROSE LIEBERMAN

Mimetic Relationships between Group A Streptococci and Mammalian Tissues

JOHN B. ZABRISKIE

Lymphocytes and Transplantation Immunity
DARCY B. WILSON AND R. E. BILLINGHAM

Human Tissue Transplantation
JOHN P. MERRILL

AUTHOR INDEX-SUBJECT INDEX

Volume 8

Chemistry and Reaction Mechanisms of Complement HANS J. MÜLLER-EBERHARD

Regulatory Effect of Antibody on the Immune Response

JONATHAN W. UHR AND GÖRAN MÖLLER

The Mechanism of Immunological Paralysis D. W. Dresser and N. A. MITCHISON

In Vitro Studies of Human Reaginic Allergy
ABRAHAM G. OSLER, LAWRENCE M. LICHTENSTEIN, AND DAVID A. LEVY

AUTHOR INDEX-SUBJECT INDEX

Volume 9

Secretory Immunoglobulins

THOMAS B. TOMASI, JR., AND JOHN BIENENSTOCK

Immunologic Tissue Injury Mediated by Neutrophilic Leukocytes
CHARLES G. COCHRANE

The Structure and Function of Monocytes and Macrophages ZANVIL A. COHEN

The Immunology and Pathology of NZB Mice
J. B. Howie and B. J. Helyer

AUTHOR INDEX-SUBJECT INDEX

Volume 10

Cell Selection by Antigen in the Immune Response
GREGORY W. SISKIND AND BARUJ BENACERRAF

Phylogeny of Immunoglobulins HOWARD M. GREY

Slow Reacting Substance of Anaphylaxis
ROBERT P. ORANGE AND K. FRANK AUSTEN

Some Relationships among Hemostasis, Fibrinolytic Phenomena, Immunity, and the Inflammatory Response

OSCAR D. RATNOFF

Antigens of Virus-Induced Tumors
KARL HABEL

Genetic and Antigenetic Aspects of Human Histocompatibility Systems
D. Bernard Amos

AUTHOR INDEX-SUBJECT INDEX

CONTENTS

PREFACE
Electron Microscopy of the Immunoglobulins N. MICHAEL GREEN I. Introduction
Electron Microscopy of the Immunoglobulins N. MICHAEL GREEN I. Introduction
N. MICHAEL GREEN I. Introduction
I. Introduction
II. Electron Microscopy at the Molecular Level
II. Electron Microscopy at the Molecular Level
III. Electron Microscopy of IgG
IV. Electron Microscopy of IgM
V. Comments and Conclusions
References
Genetic Control of Specific Immune Responses
Hugh O. McDevitt and Baruj Benacerraf
I. Introduction
II. Constitutional Differences in Individual Responses to Complex Multi-
determinant Antigens
III. Analysis of the Mechanism of Gene Action
IV. Genetic Differences in Immune Response to Defined Protein Antigens . 38
V. Genetic Differences in Immune Responses to Synthetic Polypeptide
Antigens
VI. Conclusions
References
The Lesions in Cell Membranes Caused by Complement
John H. Humphrey and Robert R. Dourmashkin
I. Introduction
II. Description of Holes Produced by the Action of C'
III. Holes Produced by C' in Substrates Other than Erythrocyte Membranes 85
IV. The Relationship of Holes to Sites of Damage on the Cell Surface . 88
V. Occurrence of Multiple Holes (Clusters) at Single Sites of Damage . 92
VI. The Number of Antibody Molecules Required to Produce a Lesion . 95
VII. The Stage of C' Action at Which Holes Are Formed 98
VIII. The Nature of C' Holes
IX. Artificial Membrane Models
X. Biological Significance of the Terminal C' Lesion
References

X CONTENTS

Cytotoxic Effects of Lymphoid Cells in Vitro	
Peter Perlmann and Göran Holm	
I. Introduction II. Methods III. Different in Vitro Models IV. Some in Vivo Implications of the in Vitro Models V. Summary	
70 (185
Transfer Factor	
H. S. Lawrence	
I. Introduction II. Definitions and General Principles III. Transfer of Delayed Hypersensitivity with Viable Blood Leuke IV. Transfer Factor—Characterization and Mechanism of Action V. Nature and Properties of Dialyzable Transfer Factor VI. Transfer Factor and in Vitro Correlates of Cellular Immunity VII. Mechanism of Action of Transfer Factor in Vivo and in Vitro VIII. Transfer Factor and Mechanisms of Cellular Immune Deficience IX. Transfer Factor and Reconstitution of Cellular Immune Deficience X. Transfer Factor, Immunological Surveillance, and Tumor Imm XI. Conclusion References	
IV. Immunity Acquired rough Infection V. Relapses and Antigenic Variation VI. Cellular Factors in Malaria Infection VII. Antigens of Malaria Parasites VIII. Humoral Factors in Malarial Immunity IX. Active Immunization to Malaria X. Experimental Modification of Immunity XI. Immunopathology XII. Discussion	
SUBJECT INDEX	368

Electron Microscopy of the Immunoglobulins

N. MICHAEL GREEN

National Institute for Medical Research, Mill Hill, London, England

I.	Introduction				100			1.0
II.	Electron Microscopy at the Molecular Level							
	Electron Microscopy of IgG							É
	A. Results Obtained by Shadowing							í
	B. Results Obtained by Negative Staining	iki n	J	113				7
	C. The Question of Conformational Change							14
IV.	Floatron Microscoper of Tall							17
V.	Comments and Conclusions	111						26
	References	17.1				14.5	7.1	28

I. Introduction

Chemical techniques have provided extensive information about the structure of the constituent peptide chains of immunoglobulin molecules and the way in which they are linked to each other (reviewed by Cohen and Porter, 1964; Cohen and Milstein, 1967). They have also shown how the chains interact to give the compact Fab and Fc fragments which are produced by splitting of a few peptide and disulfide bonds. A different approach is required to determine the overall layout of the molecule and the spatial relationships of the fragments to each other. Before electron microscopy and X-ray crystallography had reached their present level of development the only approach to this problem was through hydrodynamics. Sedimentation, diffusion, and viscosity measurements consistently showed that the IgG molecule was either highly hydrated or asymmetric (Neurath, 1939; Oncley et al., 1947). A plausible hydration of 0.2 ml./gm. was usually assumed, from which the axial ratio of about 6:1 was calculated. IgM has an even higher frictional ratio ($f/f_0 = 1.9$) (Miller and Metzger, 1965a), and in these terms would have an axial ratio of about 10:1. The asymmetry of IgG was supported by the early electron micrographs and a rod-shaped or ellipsoidal model was accepted for some time. However, in 1965, Noelken et al. pointed out that there were other possible interpretations of the high fractional ratio and intrinsic viscosity, which were more consistent with the chemical evidence. The Fab and Fc fragments showed normal fractional ratios and viscosities and so were not unusually hydrated or asymmetric. It was suggested that these three fragments were joined in Y formation by a relatively flexible

region of peptide chain, of which the extensive hydration could explain both the high frictional ratio and the susceptibility to enzymatic attack.

The contribution of electron microscopy to the solution of the problem provides the main subject for this review. Brief reviews of the subject have appeared elsewhere (Horne, 1965, 1968; Stanworth and Pardoe, 1967). The use of ferritin-labeled antibody as a specific marker for cellular constituents has been treated elsewhere (Andres *et al.*, 1967) and is also the subject of a forthcoming article (Rifkind, 1969), so it will not be considered here.

II. Electron Microscopy at the Molecular Level

The recent application of electron microscopy to the study of structure of macromolecules followed the exploitation of negative contrast methods for the study of viruses (Brenner and Horne, 1959).

The limiting factor both now and in the earlier work was not the resolving power of the microscope (about 5 Å.) but the difficulty in obtaining sufficient contrast with specimens of molecular dimensions (Valentine, 1961). Unless the thickness of a protein molecule is greater than 70 Å. (mol. wt. 150,000), it will not, if untreated, scatter a sufficient proportion of the incident electrons to render it visible against the usual background of carbon film. The first advance in technique was the use of metal shadowing (Williams and Wyckoff, 1945) which proved very successful with virus particles and was particularly useful for revealing detail of the surface and the height of the particle. The unavoidable granularity (20 Å.) of the evaporated metal film limited the effective magnification to about 50,000, which was not quite sufficient to reveal subunit structure in proteins. The method was, however, used to determine the lengths of some highly asymmetric molecules (Hall and Doty, 1958) and provided one of the earliest pictures of unattached antibody molecules (Hall et al., 1959).

Two other general methods have been used for enhancing contrast. Positive staining, although satisfactory for sectioned material, is of little use at the molecular level because it is difficult to combine sufficient stain with the specimen (Valentine, 1961). Negative staining (more accurately, negative contrast), on the other hand, has proved to be both simple and effective for the study of viruses and of a variety of protein molecules. In its simplest form a droplet of the dilute (0.01%) protein solution, mixed with 2% sodium phosphotungstate or other suitable salt, is applied to a carbon (or nitrocellulose-supported carbon) film on the grid. After removing the excess fluid the film is allowed to dry. The molecules appear as low-density footprints in the thin layer of surrounding phosphotung-

state. Success depends on obtaining a faithful replies of the molecule in a uniform amorphous layer of a stain of high weight density. The properties and uses of various heavy metal salts have been discussed by Valentine and Horne (1962) and by Horne (1968).

Much of the work with antibodies has employed phosphotungstate, but recently silicotungstate, introduced by Wilcox et al. (1963) for use with viruses, has been found to give a slightly less granular background. It is more stable at neutral pH than phosphotungstate (Baker et al., 1955) and the surface activity of its solutions causes it to spread more evenly at low protein concentration. A variation of the negative staining technique, described by Valentine et al. (1968) for use with enzymes, is worth repeating here with some additional details, in view of the excellent results it has given with antibodies. The molecules were picked up on carbon film deposited on freshly cleaved mica, by dipping the mica, film upward, into the protein solution (30-60 µg, antibody/ml.). The solution penetrated between the hydrophilic mica and the floating hydrophobic film and the molecules were adsorbed on the carbon in a few seconds. The film was transferred on the mica to a dish of 2% sodium silicotungstate, where it was left floating for a minute or two. A 400-mesh copper grid, coated with a thin layer of adhesive, was placed on the film, followed by a square of adsorbent paper (e.g., newsprint). The paper was removed together with the adhering grid and film and placed on filter paper to drain. The grid dries in a short time and is ready for examination. Uranyl salts have been used by Höglund (1967a,b) and give higher contrast and greater penetration than the tungstates, but this advantage is offset by the more granular background. Uranyl formate, in particular, penetrates further into molecules and between subunits (Leberman, 1965; Finch and Holmes, 1968), and this has been turned to advantage by Svehag et al. (1969) who were sometimes able to resolve H chains from each other and from L chains in fragments of IgM (see below). Objections that negative staining and drying may disrupt labile protein molecules are difficult to refute and cannot be disregarded. In some cases it has been shown that the biological activities of enzymes (Valentine et al., 1968) and antibodies (Chesebro et al., 1968) are not affected by drying down in the presence of the stain.

A further check for artifacts can be made by comparing the volume estimated from the linear dimensions with the molecular weight of the macromolecule (Rowe, 1966). The curves in Fig. 1 facilitate such estimations for spherical and cylindrical subunits. Unfortunately this can only be a very rough comparison since there are several possible sources of error in the measurement of overall linear dimensions. The blurred out-