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Preface

This book is an expanded version of lecture notes for the graduate course “An
Introduction to Methods of Functional Analysis in Probability and Stochastic
Processes” that I gave for students of the University of Houston, Rice University,
and a few friends of mine in Fall, 2000 and Spring, 2001. It was quite an
experience to teach this course, for its attendees consisted of, on the one hand,
agroup of students with a good background in functional analysis having limited
knowledge of probability and, on the other hand, a group of statisticians without
a functional analysis background. Therefore, in presenting the required notions
from functional analysis, I had to be complete enough for the latter group while
concise enough so that the former would not drop the course from boredom.
Similarly, for the probability theory, I needed to start almost from scratch for the
former group while presenting the material in a light that would be interesting
for the latter group. This was fun. Incidentally, the students adjusted to this
challenging situation much better than I.

In preparing these notes for publication, I made an effort to make the presen-
tation self-contained and accessible to a wide circle of readers. I have added a
number of exercises and disposed of some. I have also expanded some sections
that I did not have time to cover in detail during the course. I believe the book
in this form should serve first year graduate, or some advanced undergraduate
students, well. It may be used for a two-semester course, or even a one-semester
course if some background is taken for granted. It must be made clear, however,
that this book is not a textbook in probability. Neither may it be viewed as a
textbook in functional analysis. There are simply too many important subjects
in these vast theories that are not mentioned here. Instead, the book is intended
for those who would like to see some aspects of probability from the perspec-
tive of functional analysis. It may also serve as a (slightly long) introduction
to such excellent and comprehensive expositions of probability and stochastic
processes as Stroock’s, Revuz’s and Yor’s, Kallenberg’s or Feller’s.
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Xii Preface

It should also be said that, despite its substantial probabilistic content, the
book is not structured around typical probabilistic problems and methods. On
the contrary, the structure is determined by notions that are functional analytic
in origin. As it may be seen from the very chapters’ titles, while the body is
probabilistic, the skeleton is functional analytic.

Most of the material presented in this book is fairly standard, and the book is
meant to be a textbook and not a research monograph. Therefore, I made little
or no effort to trace the source from which I had learned a particular theorem
or argument. I want to stress, however, that I have learned this material from
other mathematicians, great and small, in particular by reading their books. The
bibliography gives the list of these books, and I hope it is complete. See also
the bibliographical notes to each chapter. Some examples, however, especially
towards the end of the monograph, fit more into the category of “research”.

A word concerning prerequisites: to follow the arguments presented in the
book the reader should have a good knowledge of measure theory and some
experience in solving ordinary differential equations. Some knowledge of ab-
stract algebra and topology would not hurt either. I sketch the needed material
in the introductory Chapter 1. I do not think, though, that the reader should start
by reading through this chapter. The experience of going through prerequisites
before diving into the book may prove to be like the one of paying a large bill
for a meal before even tasting it. Rather, I would suggest browsing through
Chapter 1 to become acquainted with basic notation and some important exam-
ples, then jumping directly to Chapter 2 and referring back to Chapter 1 when
needed.

I would like to thank Dr. M. Papadakis, Dr. C. A. Shaw, A. Renwick and F. J.
Foss (both PhDs soon) for their undivided attention during the course, efforts to
understand Polish-English, patience in endless discussions about the twentieth
century history of mathematics, and valuable impact on the course, including
how-to-solve-it-easier ideas. Furthermore, I would like to express my gratitude
to the Department of Mathematics at UH for allowing me to teach this course.
The final chapters of this book were written while I held a special one-year
position at the Institute of Mathematics of the Polish Academy of Sciences,
Warsaw, Poland.

A final note: if the reader dislikes this book, he/she should blame F. J.
Foss who nearly pushed me to teach this course. If the reader likes it, her/his
warmest thanks should be sent to me at both addresses: bobrowscy@op.pl
and a.bobrowski@pollub.pl. Seriously, I would like to thank Fritz Foss for his
encouragement, for valuable feedback and for editing parts of this book. All
the remaining errors are protected by my copyright.
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Preliminaries, notations and conventions

Finite measures and various classes of functions, including random vari-
ables, are examples of elements of natural Banach spaces and these
spaces are central objects of functional analysis. Before studying Ba-
nach spaces in Chapter 2, we need to introduce/recall here the basic
topological, measure-theoretic and probabilistic notions, and examples
that will be used throughout the book. Seen from a different perspective,
Chapter 1 is a big “tool-box” for the material to be covered later.

1.1 Elements of topology

1.1.1 Basics of topology ~We assume that the reader is familiar with
basic notions of topology. To set notation and refresh our memory., let us
recall that a pair (S,U) where S is a set and U is a collection of subsets
of § is said to be a topological space if the empty set and S belong to
U, and unions and finite intersections of elements of U belong to ¢. The
family ¢ is then said to be the topology in S, and its members are called
open sets. Their complements are said to be closed. Sometimes, when
U is clear from the context, we say that the set S itself is a topological
space. Note that all statements concerning open sets may be translated
into statements concerning closed sets. For example, we may equivalently
define a topological space to be a pair (S,C) where C is a collection of
sets such that the empty set and S belong to C, and intersections and
finite unions of elements of C belong to C.

An open set containing a point s € S is said to be a neighborhood of
s. A topological space (S,U) is said to be Hausdorff if for all p;,p2 € S,
there exists A1, Ay € U such that p; € A;,i = 1,2 and A; N Ay = 0.
Unless otherwise stated, we assume that all topological spaces considered
in this book are Hausdorff.
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The closure, cl(A), of a set A C S is defined to be the smallest closed
set that contains A. In other words, cl(A) is the intersection of all closed
sets that contain A. In particular, A C cl(A). A is said to be dense in
S iff el(A) = S.

A family V is said to be a base of topology U if every element of U
is a union of elements of V. A family V is said to be a subbase of U/ if
the family of finite intersections of elements of V is a base of U.

If (S,U) and (S',U") are two topological spaces, then amap f : S — S’
is said to be continuous if for any open set A" in U’ its inverse image
f71(A’) is open in S.

Let S be a set and let (S”,U") be a topological space, and let {f;,t € T}
be a family of maps from S to S’ (here T is an abstract indexing set).
Note that we may introduce a topology in S such that all maps f; are
continuous, a trivial example being the topology consisting of all subsets
of S. Moreover, an elementary argument shows that intersections of finite
or infinite numbers of topologies in S is a topology. Thus, there exists
the smallest topology (in the sense of inclusion) under which the f;
are continuous. This topology is said to be generated by the family

{ft,t € T}

1.1.2 Exercise Prove that the family V composed of sets of the form
frY(A"),t € T,A’ €U is a subbase of the topology generated by f;.t €
T.

1.1.3 Compact sets A subset K of a topological space (S,U) is said to
be compact if every open cover of K contains a finite subcover. This
means that if V is a collection of open sets such that K C (Jz., B.
then there exists a finite collection of sets B;...., B, € V such that
K c Ui, B:. If S is compact itself, we say that the space (S.U) is
compact (the reader may have noticed that this notion depends as much
on S as it does on U). Equivalently, S is compact if, for any family
Ci,t € T of closed subsets of S such that MierCt = 0, there exists
a finite collection Cy,, ..., Cy, of its members such that N/_, Cy, = 0.
A set K is said to be relatively compact iff its closure is compact.
A topological space (S,U) is said to be locally compact if for every
point p € S there exist an open set A and a compact set K, such that
s € A'C K. The Bolzano—Weierstrass Theorem says that a subset
of R™ is compact iff it is closed and bounded. In particular, R™ is locally
compact.
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1.1.4 Metric spaces Let X be an abstract space. A mapd : XxX — R™
is said to be a metric iff for all z.y,z € X

(a) d(z,y) = d(y, z),
(b) d(z,y) < d(z,2) + d(2,y),
(c) diz,y) = 0iff o=

A sequence z, of elements of X is said to converge to z € X if
lim,, o d(x,,2) = 0. We call z the limit of the sequence (z,),>1 and
write lim, o =, = x. A sequence is said to be convergent if it con-
verges to some x. Otherwise it is said to be divergent.

An open ball B(z,r) with radius r and center z is defined as the set
of all y € X such that d(z,y) < r. A closed ball with radius r and center
2 is defined similarly as the set of y such d(z,y) < r. A natural way to
make a metric space into a topological space is to take all open balls as
the base of the topology in X. It turns out that under this definition a
subset A of a metric space is closed iff it contains the limits of sequences
with elements in A. Moreover, A is compact iff every sequence of its
elements contains a converging subsequence and its limit belongs to the
set A. (If S is a topological space, this last condition is necessary but
not sufficient for A to be compact.)

A function f : X — Y that maps a metric space X into a normed
space Y is continuous at x € X if for any sequence x, converging to
x, lim, . f(z,) exists and equals f(z) (z, converges in X, f(z,) con-
verges in Y). f is called continuous if it is continuous at every z € X
(this definition agrees with the definition of continuity given in 1.1.1).

1.2 Measure theory

1.2.1 Measure spaces and measurable functions  Although we assume
that the reader is familiar with the rudiments of measure theory as
presented, for example, in [103], let us recall the basic notions. A family
F of subsets of an abstract set € is said to be a o-algebra if it contains
and complements and countable unions of its elements. The pair (2, F)
is then said to be a measurable space. A family F is said to be an
algebra or a field if it contains €2, complements and finite unions of its
elements.

A function p that maps a family F of subsets of € into R* such that

o>

@ Z: (1.1)
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for all pairwise-disjoint elements A,,n € N of F such that the union
U,en An belongs to F is called a measure. In most cases F is a o-
algebra but there are important situations where it is not, see e.g. 1.2.8
below. If F is a o-algebra, the triple (2, F, i) is called a measure space.

Property (1.1) is termed countable additivity. If F is an algebra
and u(S) < oo, (1.1) is equivalent to

o0

Jlim p(An) =0 whenever A, € F,An D Ant1, Elida 0, (12
n=1

The reader should prove it.

The smallest o-algebra containing a given class F of subsets of a set is
denoted o (F). If Q is a topological space, then B(£2) denotes the smallest
o-algebra containing open sets, called the Borel o-algebra. A measure
p on a measurable space (2, F) is said to be finite (or bounded) if
p() < oo. It is said to be o-finite if there exist measurable subsets ,,.
n € N, of  such that p(Q,) < oc and 2 = Unen Q-

A measure space (2, F, ) is said to be complete if for any set A C Q
and any measurable B conditions A € B and pu(B) = 0 imply that A
is measurable (and p(A) = 0, too). When Q and F are clear from the
context, we often say that the measure p itself is complete. In Exercise
1.2.10 we provide a procedure that may be used to construct a complete
measure from an arbitrary measure. Exercises 1.2.4 and 1.2.5 prove that
properties of complete measure spaces are different from those of mea-
sure spaces that are not complete.

A map f from a measurable space (£, F) to a measurable space
(¥, F') is said to be F measurable, or just measurable iff for any
set A € F' the inverse image f~!(A) belongs to F. If, additionally, all
inverse images of measurable sets belong to a sub-o-algebra G of F, then
we say that f is G measurable, or more precisely G/F’ measurable.
If f is a measurable function from (€2, F) to (', F') then

o ={A € F|A= f~!(B) where B € F'}

is a sub-g-algebra of F. o is called the o-algebra generated by f. Of
course, f is G measurable if 07 C G.

The o-algebra of Lebesgue measurable subsets of a measurable subset
A C R" is denoted M,,(A) or M(A) if n is clear from the context, and
the Lebesgue measure in this space is denoted leb,,, or simply leb. A stan-
dard result says that M := M(R") is the smallest complete o-algebra
containing B(R"). In considering the measures on R™ we will always
assume that they are defined on the o-algebra of Lebesgue measurable
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sets, or Borel sets. The interval [0,1) with the family of its Lebesgue
subsets and the Lebesgue measure restricted to these subsets is often
referred to as the standard probability space. An n-dimensional
random vector (or simply n-vector) is a measurable map from a proba-
bility space (Q, F,P) to the measurable space (R", B(R")). A complex-
valued random variable is simply a two dimensional random vec-
tor; we tend to use the former name if we want to consider complex
products of two-dimensional random vectors. Recall that any random n-
vector X is of the form X = (Xjy,..., X;;) where X; are random variables
X Q— R

1.2.2 Exercise Let A be an open set in R™. Show that A is union of
all balls contained 'in A with rational radii and centers in points with
rational coordinates. Conclude that B(R) is the o-algebra generated by
open (resp. closed) intervals. The same result is true for intervals of the
form (a, b] and [a,b). Formulate and prove an analog in R™.

1.2.3 Exercise Suppose that 2 and 2’ are topological spaces. If a map
f: Q — Q' is continuous, then f is measurable with respect to Borel
o-fields in Q and €. More generally, suppose that f maps a measurable
space (2, F) into a measurable space (Q,F’), and that G’ is a class of
measurable subsets of Q such o(G’) = F'. If inverse images of elements
of G’ are measurable, then f is measurable.

1.2.4 Exercise Suppose that (2, F, 1) is a measure space, and f maps
Q into R. Equip R with the o-algebra of Borel sets and prove that f
is measurable iff sets of the form {w|f(w) < t}, t € R belong to F.
(Equivalently: sets of the form {w|f(w) < t}, t € R belong to F.) Prove
by example that a similar statement is not necessarily true if Borel sets
are replaced by Lebesgue measurable sets.

1.2.5 Exercise = Let (Q,F; ) be a complete’ measure space, and f be
amap f: Q — R. Equip R with the algebra of Lebesgue measurable
sets and prove that f is measurable iff sets of the form {w|f(w) < t},
t € R belong to F. (Equivalently: sets of the form {w|f(w) < t},t € R
belong to F.)

1.2.6 Exercise =~ Let (S,U) be a topological space and let S’ be its
subset. We can introduce a natural topology in S’ termed induced
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topology, to be the family of sets U’ = U NS’ where U is open in S.
Show that

B(S')={BCS|B=ANS AeB(S)). (1.3)

1.2.7 Monotone class theorem A class G of subsets of a set (2 is termed
a m-system if the intersection of any two of its elements belongs to the
class. It is termed a \-system if (a) © belongs to the class, (b) A,B € G
and A C B implies B\A € G and (c)if A4y, As,...€ G,and A} C Ay C -~
then (J,, ey An € G. The reader may prove that a A-system that is at the
same time a m-system is also a o-algebra. In 1.4.3 we exhibit a natural
example of a A-system that is not a o-algebra. The Monotone Class
Theorem or 7—\ theorem, due to W. Sierpinski, says that if G is
a m-system and F is a A\-system and G C F, then o(G) C F. Asa
corollary we obtain the uniqueness of extension of a measure defined on
a m-system. To be more specific, if (€2, F) is a measure space, and G is
a m-system such that o(G) = F, and if u and p’ are two finite measures
on (Q, F) such that u(A) = p/(A) for all A € G, then the same relation
holds for A € F. See [5].

1.2.8 Ewxistence of an extension of a measure A standard construction
involving the so-called outer measure shows the existence of an extension
of a measure defined on a field. To be more specific, if u is a finite
measure on a field F, then there exists a measure f on o(F) such that
fa(A) = p(A) for A € F, see [5]. It is customary and convenient to omit
the “7” and denote both the original measure and its extension by .
This method allows us in particular to prove existence of the Lebesgue
measure [5, 106].

1.2.9 Two important properties of the Lebesgue measure  An important
property of the Lebesgue measure is that it is regular, which means that
for any Lebesgue measurable set A and € > 0 there exists an open set
G D A and a compact set K C A such that leb(G \ K) < €. Also, the
Lebesgue measure is translation invariant, i.e. leb A = leb A; for any
Lebesgue measurable set A and t € R, where

Ay ={seR;s—te A}l (1.4)

1.2.10 Exercise Let (£, F) be a measure space and p be a measure,
not necessarily complete. Let Fq be the class of subsets B of 2 such that
there exists a C' € F such that u(C) = 0and B C C. Let F, = o(FUFy).
Show that there exists a unique extension of x4 to F,, and (2, F,, 1) is a
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complete measure space. Give an example of two Borel measures p and
v such that F,, # F,. |

1.2.11 Integral ~ Let (Q, F, ) be a measure space. The integral [ fdu
of a simple measurable function f, i.e. of a function of the form
= Z?=1 c;14, where n is an integer, ¢; are real constants, A; be-
long to F, and p(A;) < oc, is defined as [ fdu = > ciu(A;). We
check that this definition of the integral does not depend on the choice
of representation of a simple function. The integral of a non-negative
measurable function f is defined as the supremum over integrals of non-
negative simple measurable functions f, such that f; < f (u a.e.). This
last statement means that fs(w) < f(w) for all w € Q outside of a mea-
surable set of py-measure zero. If this integral is finite, we say that f is
integrable.

Note that in our definition we may include functions f such that
f(w) = 50 on a measurable set of ws. We say that such functions have
their values in an extended non-negative half-line. An obvious necessary
requirement for such a function to be integrable is that the set where it
equals infinity has measure zero (we agree as it is customary in measure
theory that 0 - oo = 0).

If a measurable function f has the property that both f* = max(f,0)
and f~ = max(—f,0) are integrable then we say that f is absolutely
integrable and put [ fdu = [ f*du— [ f~ du. The reader may check
that for a simple function this definition of the integral agrees with the
one given initially. The integral of a complex-valued map f is defined
as the integral of its real part plus : (the imaginary unit) times the
integral of its imaginary part, whenever these integrals exist. For any
integrable function f and measurable set A the integral [ 4 [ dpis defined
as f 1 Af d/J.

This definition implies the following elementary estimate which proves
useful in practice:

‘ [ fdu‘ < [ irlan (1.5)

Moreover, for any integrable functions f and g and any a and 3 in R,
we have

Jas+sndu=a [ ran+s [odu

In integrating functions defined on (R™, M,,(R™), leb,,) it-is customary



8 Preliminaries, notations and conventions

to write dsj...ds, instead of dleb,(s) where s = (s1,...,5,). In one
dimension, we write ds instead of dleb(s).

There are two important results concerning limits of integrals de-
fined this way that we will use often. The first one is called Fatou’s
Lemma and the second Lebesgue Dominated Convergence The
orem. The former says that for a sequence of measurable functions f,
with values in the extended non-negative half-line lim inf,, . [ fndp >
Jlim inf, _, fndp. and the latter says that if f, is a sequence of mea-
surable functions and there exists an integrable function f such that
|fa] < f (p ae.), then lim, .o [ fadp = [ gdp, provided f, tends
to g pointwise, except perhaps on a set of measure zero. Observe that
condition |f,| < f implies that f, and g are absolutely integrable; the
other part of the Lebesgue Dominated Convergence Theorem says that
[ |fn — g/ du tends to zero, as n — co. The reader may remember. that
both above results may be derived from the Monotone Convergence
Theorem, which says that if f, is a sequence of measurable functions
with values in the extended non-negative half-line, and f,+1(w) > fn(w)
for all w except maybe on a set of measure zero, then [ 4 frndp tends to
i) 4 limy oo fr(w) dp regardless of whether the last integral is finite or in-
finite. Here A is the set where lim,,_, . fn(w) exists, and by assumption
it is a complement of a set of measure zero.

Note that these theorems are true also when, instead of a sequence of
functions, we have a family of functions indexed, say, by real numbers
and consider a limit at infinity or at some point of the real line.

1.2.12 Exercise = Let (a,b) be an interval and let, for 7 in this inter-
val, z(7,w) be a given integrable function on a measure space (2, F, u).
Suppose furthermore that for almost all w € Q, 7 — z(7,w) is con-
tinuously differentiable and there exists an integrable function y such
that sup,.¢(, ) |2/ (1,w)] < y( ), Prove thet, #(t )=, Jaal p(dw) is
differentiable and that 2'(7) = [, 2/(7.w) p(dw).

1.2.13 Product measures = Let (Q,F,u) and (@, F’, i) be two o-finite
measure spaces. In the Cartesian product © x € consider the rect-
angles, i.e. the sets of the form A x A’ where A € F and A’ € F/,
and the function p ® p/(A x A’) = p(A)p/'(A’). Certainly, rectangles
form a m-system, say R, and it may be proved that yu ® y’ is a mea-
sure on R and that there exists an extension of y ® p’ to a measure on
o(R), which is necessarily unique. This extension is called the prod-
uct measure of i and y'. The assumption that p and p’ are o-finite



