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PREFACE

At a time when textbooks in mathematics, physics, and engineering are
emerging in endless procession, there rests upon the author of a new text
an obligation to justify his efforts either in terms of contributions to a better
understanding of the subject or to the advancement of the frontiers of
knowledge. This text is intended primarily for students in engineering and
physics at the senior and graduate level. Its preparation has been guided
by the following principles:

a. It endeavors to present a reasonably comprehensive exposition of the
branches of advanced mathematics which constitute the principal analytical
methods used throughout physics and engineering. It is hoped that this
will enable the student to gain broader horizons of knowledge and to acquire
a higher degree of mathematical proficiency. To this end, clarity and un-
derstanding have been the foremost considerations, although a moderate
balance of mathematical rigor has been sought.

b. It is the author’s belief that the basic laws in many of the more
important areas of physics and engineering can be expressed in very general
form by a few fundamental mathematical formulations. These general
formulations provide a broad perspective of the physical sciences and form
the springboard for the development of vast areas of applications.

In this text an attempt has been made to develop the fundamental for-
mulations in those fields which are the common ground of the physicist and
the engineer. It is then shown how these simplify for special cases to the
equations which usually form the starting point in the solution of problems
in physics and engineering. Solutions of typical problems are included in
order to provide concrete examples of the mathematical methods.

Undergraduate courses throughout physics and engineering are charac-
terized by a strong propensity to use simplified mathematical formulations
in order to achieve clarity. Often these formulations are special cases of a
broad fundamental theory, but in the process of simplification, the funda-
mental relationships are lost. A course in advanced mathematics in physics
and engineering offers a singular opportunity to impart a new dimension of
breadth and perspective to the student’s understanding of mathematics and
the physical sciences. It is the author’s opinion that this can be accom-
plished without devoting an excessive amount of time to the rigors of
advanced mathematics. Such an approach enables the student to survey
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iv PREFACE

the surrounding terrain from the mountain peaks, rather than become
eternally engaged in struggling up the mountainsides from the lower
reaches. But an aesthetic appreciation alone from the vantage point of
the lofty peaks is not enough. The student must also descend into the
valleys and the forests and travel the many interesting trails if he would
gain mastery of the subject.

c. Finally, anyone who has studied mathematical methods in physics
and engineering cannot help being impressed by the strong underlying
unity in the methods of mathematical analysis in many fields of physics
and engineering. A course in advanced mathematics offers a unique oppor-
tunity to explore this fundamental unity in the mathematical methods.
In this text an attempt has been made to develop the mathematical analysis
of various fields along similar lines so as to emphasize this unity.

The first five chapters present a mathematical foundation in complex
numbers, infinite series, the solution of ordinary differential equations, and
series methods of solving differential equations, including the Bessel,
Legendre, and associated Legendre equations. There follows a chapter on
partial differentiation, which includes as an application some of the funda-
mental formulations in thermodynamics. The next two chapters are
devoted to the analysis of mechanical vibration and electrical oscillation
in systems containing lumped and distributed elements. The treatment of
systems with distributed elements provides a convenient preview of meth-
ods of solving partial differential equations, a subject which is treated with
considerably greater generality in Chap. 11. The Lagrangian method of
formulating differential equations and its relation to Hamilton’s principle
and the action integral are considered in Chap. 9.

An introduction to the subject of vector analysis is given in Chap. 10.
Here one might question whether the subject of vector analysis or that of
functions of a complex variable should be treated first. Both subjects have
their own particular areas of application. In dealing with field and flow
problems, however, the vector-analysis approach is unquestionably more
general. The fundamental physical laws can be derived in very general
form using the vector-analysis method of expression. These relationships
can be readily specialized for problems in one, two, or three dimensions in
any orthogonal coordinate system. The complex-variable method, on the
other hand, is of little use in the derivation of the general formulations for
field and flow problems. Furthermore, its use is restricted to a rather
narrow range of problems which satisfy Laplace’s equation and which can
be expressed in either one or two dimensions. For example, many of the
interesting and useful solutions of the wave equations in Chap. 11 can be
obtained by the methods of vector analysis, but not by those of the complex
variable.

Chapter 11 is an innovation in texts of this nature. It presents a general
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treatment of the solution of the wave equations, Laplace’s equation, the
heat-flow equation, the chemical-diffusion equation and other linear partial
differential equations. Because these fundamental equations pervade all
branches of physics and engineering, an attempt has been made to present
a simple and unified approach to their solution. The author has always
been somewhat perturbed at the haphazard way in which this subject is
usually handled. The customary approach is to present solutions of a
multiplicity of isolated problems. After obtaining many seemingly unre-
lated solutions, the student, in time, acquires experience in the types of
solutions which he is likely to encounter.

The approach used in this text is more general and is based upon obtain-
ing a common solution, applicable to all the foregoing equations, in the
form of characteristic functions expressed in rectangular, cylindrical, and
spherical coordinates. Once these solutions have been obtained, it is a
relatively simple matter to select the proper characteristic functions for a
particular static or dynamic problem in either one, two, or three dimensions.
It is hoped that this approach will provide unity and perspective in the
solution of what probably constitutes the most important segment of mathe-
matical analysis throughout all of physics and engineering.

The fundamentals of heat flow, fluid dynamics, and electromagnetic
theory occupy Chaps. 12, 13, and 14. In the chapter on fluid dynamics all
equations for both compressible and incompressible fluid flow are derived
from three fundamental equations, namely, Euler’s equation, the equation
of continuity, and the equation of state. In the chapter on electromagnetic
theory, all equations are derived from Maxwell’s equations.

Chapter 15 is devoted to the functions of a complex variable, including
Cauchy s theorems, methods of contour integration, and conformal trans-
formation. The theory of dynamic stability of airplanes, servomechanisms,
and electrical networks provides an interesting and useful application of
the theory of functions of the complex variable. This subject is of impor-
tance to the engineer and the physicist alike, and it is one in which the
technical literature is entirely inadequate but growing rapidly. The proofs of
the Routh-Hurwitz stability criterion, the Nyquist criterion, and other
stability criteria are presented, together with applications, in Chap. 16.

The final chapter presents an introduction to Laplacian methods in
operational calculus. This subject, which started out on an insecure mathe-
matical footing, has now taken its rightful place as a powerful field of
mathematical analysis, applicable to a wide area of problems in physics and
engineering.

Throughout the text, emphasis has been placed upon applications in
dynamics, rather than in statics. This is a recognition of the fact that most
of the interesting and useful problems in physics and engineering are basic-
ally dynamic problems. Also, experience has shown that a student who has
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mastered the analysis of p:)blams' in dynamics usually experiences little
difficulty in solving compdrable problems involving statics, whereas the
converse is not often true. v

The problems have been carefully chosen to supplement the text material
with additional information. Perhaps it is appropriate to inform the student
that some of the problems in this book appear as text developments in the
reference books which are listed at the end of each chapter. If this provides
the incentive for the student to seek out and cultivate an acquaintanceship
with the many excellent source books, its mission will be amply fulfilled.

The material has been arranged with a view toward achieving an expedi-
tious coverage of the essential subjects. The first few chapters provide
background material which the students will probably have had in previous
courses. An undergraduate course, following a course in differential equa-
tions, might include Chaps. 5, 6, 7, 8, 10, 11, and the first parts of Chaps.
12, 13, and 14. It will probably be found expedient to include only part of
the material in Chap. 5, since this subject has been treated rather thor-
oughly for reference purposes. An alternative arrangement would be to
take up the applications of differential equations in Chaps. 7 and 8 (except
for Art. 8.15) before treating Chap. 5. If it is desired to use the Laplace
transform method for the solution of differential equations, Chap. 17 can
be introduced early in the course, since most of this chapter is not dependent
upon the preceding chapters.

The more fundamental material and the simpler applications have been
placed toward the beginning of each chapter, with the material increasing
in complexity as the subject is developed. This permits any desired depth
of penetration without the necessity of covering all the material.

The author’s grateful appreciation goes to the many persons who have
generously provided advice and assistance in this undertaking. These
include Dennis Ford, Profs. Elliott Buell, W. S. Hamilton, E. J. Moulton,
I. T. Wetzel, T. J. Higgins, and many others. Professor E. F. Obert col-
laborated in the preparation of the material on thermodynamics in Chap. 6.
The author also desires to express a final word of appreciation for the
encouragement and liberal policies of Dean O. W. Eshbach and Dr. J. F.
Calvert of the Technological Institute at Northwestern University, which
made this work possible.

Arthur Bronwell

EVANSTON, ILL.

OCTOBER, 1952
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CHAPTER 1

INFINITE SERIES

Series methods play an important role in the mathematics of science
and engineering. In many problems, the application of series methods
facilitates solutions which would be difficult or impossible to obtain by
other means. The general solution of certain types of differential equations,
such as the Bessel equation and the Legendre equation, can be obtained
only by the use of infinite series. These sclutions, in series form, are used
to define new functions, known as Bessel functions, Legendre functions, ete.

In the use of an infinite series, it is necessary to know whether or not the
series converges to a unique limiting value. A given series may converge
for certain values of the variable and diverge for other values; hence we
define the region or interval of convergence as the range of values of the
variable for which the series converges. There are many convergence tests
which can be used to test a series for convergence. We shall consider several
of the more useful tests. In the interest of brevity, proofs of some of the
theorems have been omitted.

The terms of a series may be functions of either a real variable or a
complex variable. In this chapter, we shall consider only series containing
real variables. However, it is well to remember that many of the con-
vergence tests for series of real variables can be adapted to series containing
complex variables. By separating real and imaginary parts of a complex
series and equating reals and imaginaries on both sides of the equation,
it is often possible to reduce a single complex series to two series, one
containing the real terms and the other containing the imaginary terms.
Each of these series can be tested for convergence by the methods of this
chapter. If both series converge for a given value of the complex variable,
then the complex series converges. If either series diverges, then the
complex series diverges.

The interval of convergence of a series containing a real variable can be
represented on the real axis of that variable. In the case of the complex
series, we speak of the region or domain of convergence.

1.1. Infinite Series. A series may contain either a finite number of
terms or an infinite number of terms. Thus, the series containing functions
of a real variable z, represented by

w(z) + w@) + - Fux) + -0 = Z‘:} ua(z) 1)
1



2 INFINITE SERIES

is an infinite series. If the series is evaluated for a fixed value of the variable
z = 2, , there results a series of constant terms. This series converges
if the sum of the terms of the series approaches a unique limiting value as
the number of terms increases indefinitely. Thus, if S, is the partial sum
of the first n terms, then the series converges if

lim S,(xo) = S(x0) @

exists, where S(z,) is a constant defined as the sum of the series.
A necessary condition for convergence is that the nth term of the series
approach zero in the limit. Thus, the series of constant terms

atat - tat=2a
cannot converge unless
lima, =0 3

This is a necessary but not a sufficient condition for convergence. There
are many series which satisfy (3) but which do not converge. For example,
in the harmonic series

S e

B febftoos = 5

a=1

@
we have hm O = hm 1/n = 0. The series, however, diverges as is evident

from the iact that we can regroup the terms

1+4+G+D+A+E+4+D+ -

such that each term in parenthesis is greater than 4. The series 1 + 3 +
5+ %+ % + .- clearly diverges; hence by comparison, the harmonic
series likewise diverges.

A more precise definition of convergence may be stated as follows:

A series Y, u,(z) converges for a particular value of the variable x = z, if,
ne=]

for a given positive number ¢, which can be arbitrarily small, there exists a
positive integer N such that for all integer values of n > N

| Sa(o) — Sn(xo) | < e (5)

The value of N will be dependent upon the choice of e.
In a series which diverges, the partial sum of the first n» terms may either
approach infinity as n — «, or it may oscillate without approaching a limit.

1.2. Comparison Test for Convergence. Let ) a, be a series of finite

n=]

positive constants which 18 to be tested for convergence. For comparison, let
2 ¢» be a series of positive constants which is known to converge and Y, d, be

as=l Rel
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a series of positive constants which is known to diverge. If a, S c, for all values

of n > N, where N is an arbitrary positive integer, then the Y, a, series con-
verges. If a, = d, for all values of n > N, then the 3, a, series diverges.

To prove the convergence portion of this theorem, we note that the
first N terms of the E a, series have a finite sum. Since the remaining
terms fromn = N ton = « are term for term less than those of the E Cn
series, the sum of these terms must clearly be less than the sum of the
corresponding terms of the D ¢, series. Since, by hypothesis, the sum
of the terms in the ), ¢, series approaches a limit as n — o, it follows that
the sum of the terms in the ) a, series must likewise approach a limit as
n— w;hence the Y a, series converges. A similar proof can be established
for the divergence criterion.

The p series and the geometric series are useful in making comparison
tests. The p series is

1 1 =~ 1
14 =4 =+ oo =
st 2n (1

This will later be shown to converge for p > 1 and to diverge for p < 1.
The geometric series

al+r+r4+-)= 2 a" 2
n=0
converges to S = a/(1 — ) when |r| < 1 and diverges if |[r| 2 1. As
an example of the comparison test, consider the series

1 1
Ftatgt = Loy ®)
Each term of the series is less than a corresponding term of the p series
with p = 2, which is known to converge; hence (3) converges.

1.3. Absolute Convergence. If, in a series of positive and negative terms,
each term is replaced by its absolute value and the resulting series converges in a
given interval, then the original series converges and is said to converge abso-
lutely in that interval.

If the series of absolute values diverges, the original series may either
converge or diverge; but if it converges, it is said to converge conditionally.

For example, if the series

Uy (Zo) + ua(o) + ua(2o) + ¢+ = i Ua(20) ()]

n=1

contains both positive and negative terms, we write a new series of absolute
values of (1), thus

@] + hale)] + @] + -+ = 3 e @

If series (2) converges, then (1) is absolutely convergent.



4 INFINITE SERIES

To prove the theorem, let S:*’(z,) be the partial sum of the positive
terms and — S’ (z,) be the partial sum of the negative terms up to and
including the nth term. The sum of the first n terms of series (1) is then

Su(z)) = 8 (z0) — 87 (o)
The sum of the first n terms of (2) is
Saa(@o) = 8,7 (x0) + 8.7 (o)

Since S!*’ and S{~ are both positive numbers, it is clear that

lim Snz(xo) > lim S,“(Io)

assuming that both limits exist. Consequently, if (2) converges, (1) must
likewise converge and its sum must be less than the sum of series (2).

1.4. Ratio Test for Convergence. The ratio test is a simple and ex-
tremely useful convergence test. It may be stated as follows:

A series of constants Z a, converges absolutely if

n=1

lim | & | <1

n—+o a,

The series diverges if

lim | %222 | > 1

n—o a,

The series may either converge or diverge if

lim | ®2| = 1

n—o a,

The theorem may be proved by use of the comparison test. Consider
first the series of absolute values Y |a,|. In this series, let it be assumed
n=1
that

L = lim | &2t

n—o

<1

Now choose a number 7, such that L < r < 1. There will then be a value
of n = N, such that

AN+
ay

Oxsa Onss

<7 < <L ete.

Ay 41 ay+2

Therefore
IaN+1| <?r IaNI

|a,“,| < T lﬂwu] 4 lah'l
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RATIO TEST FOR CONVERGENCE b

The sum of the terms of the series of absolute values from n = N to
n = o is therefore

lay| + |awer] + lawsa] + layssl + oo <@ +r 4+ 7"+ 7" + --2) |ax]

The series on the right is the geometric series which convergés, since
by hypothesis r < 1. Hence, the series on the left likewise converges.

We conclude, therefore, that, if L < 1, the series of absolute values > laa

n=1

converges. Finally, by Art. 1.3, if the series of absolute values converges,

the original series > a,, which may contain both positive and negative

n=1
terms, converges absolutely.
As an example, let us test the following series for convergence.

e kan—l
Xt )
The ratio test yields

lim | %=1

n—®

&**(n + 1)! '
n + 21&"

n Ao

which may be written

kz(k!-—l)(n + l)l 2
n + 2)(n + D! n+42

Hence, by the ratio test, the series converges for all finite values of k.
When we attempt to apply the ratio test to the p series

=0

n—o N+

1 1 — 1
b el L =
+tetpt 2 @
we obtain
I n’ -1 1 =
"ll‘? (n+ 1) "'l'I'I’l (l 8 l), !
n
hence the ratio test fails.

However, if we let p = 1, series (2) reduces to the harmonic series
14 4+ % + --- which was shown in Art. 1.1 to diverge. When p < 1,
each term of series (2) is greater than the corresponding term of the
harmonic series; hence by the comparison test, the p series diverges for
ps1l

Now consider p > 1. For eomparison, we use the series

1 1 = 1
14— oo = Y ——
+ 2._‘ + ( -1\2 + o8 (2.-1)- (3)



