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PRETFACE

The fourth edition of Digital Communications has undergone a minor revision.
Several new topics have been added, including serial and parallel concatenated
codes, punctured convolutional codes, turbo TCM and turbo equalization, and
spatial multiplexing. Since this is an introductory-level text, the treatment of
these topics is limited in scope.

The book is designed to serve as a text for a first-year graduate-level course
for students in electrical engineering. It is also designed to serve as a text for self-
study and as a reference book for the practicing engineer involved in the design
of digital communications systems. As a background, I presume that the reader
has a thorough understanding of basic calculus and elementary linear systems
theory and some prior knowledge of probability and stochastic processes.

Chapter 1 is an introduction to the subject, including a historical perspective
and a description of channel characteristics and channel models.

Chapter 2 contains a review of the basic elements of probability and stochas-
tic processes. It deals with a number of probability distribution functions and
moments that are used throughout the book. It also includes the derivation of
the Chernoff bound, which is useful in obtaining bounds on the performance of
digital communications systems.

Chapter 3 treats source coding for discrete and analog sources. Emphasis is
placed on scalar and vector quantization techniques, and comparisons are made
with basic results from rate-distortion theory.

In Chapter 4, the reader is introduced to the representation of digitally
modulated signals and to the characterization of narrowband signals and sys-
tems. Also treated in this chapter are the spectral characteristics of digitally
modulated signals. New material has been added on a linear representation of
CPM signals.

Chapter 5 treats the design of modulation and optimum demodulation and
detection methods for digital communications over an additive white Gaussian
noise channel. Emphasis is placed on the evaluation of the error rate perfor-
mance for the various digital signaling techniques and on the channel bandwidth
requirements of the corresponding signals.

Chapter 6 is devoted to carrier phase estimation and time synchronization
methods based on the maximum-likelihood criterion. Both decision-directed and
non-decision-directed methods are described.



Chapter 7 treats the topics of channel capacity for several different channel
models and random coding.

Chapter 8 treats linear block and convolutional codes. The new topics added
to the chapter include serial and parallel interleaved concatenated block and
convolutional codes, punctured and rate-compatible convolutional codes, the
soft-output Viterbi algorithm (SOVA), and turbo TCM.

Chapter 9 is focused on signal design for bandlimited channels. This chapter
includes the topics of partial response signals and run-length-limited codes for
spectral shaping.

Chapter 10 treats the problem of demodulation and detection of signals
corrupted by intersymbol interference. The emphasis is on optimum and sub-
optimum equalization methods and their performance. New topics added to the
chapter include Tomlinson-Harashima precoding, reduced complexity maxi-
mum-likelihood detectors, and turbo equalization.

Chapter 11 treats adaptive channel equalization. The LMS and recursive
least-squares algorithms are described, together with their performance charac-
teristics. This chapter also includes a treatment of blind equalization algorithms.
New topics added include the tap-leakage algorithm and methods for accelerat-
ing the initial convergence of the LMS algorithm.

Chapter 12 treats multichannel and multicarrier modulation. The latter sub-
ject is particularly appropriate in view of several important applications that
have been developed over the past two decades.

Chapter 13 is devoted to spread spectrum signals and systems. The benefits of
coding in the design of spread spectrum signals is emphasized throughout this
chapter. ’

Chapter 14 treats communication through fading channels. Several channel
fading statistical models are considered, with emphasis placed on Rayleigh fad-
ing and Nakagami fading. Trellis coding for fading channels is also included in
this chapter. New material added includes a brief treatment of fading and multi-
path characteristics of mobile radio channels, receiver structures for fading mul-
tipath channels with intersymbol interference, and spatial multiplexing using
multiple transmit and receive antennas.

Chapter 15 treats multiuser communications. The emphasis is on code-divi-
sion multiple access (CDMA), signal detection and random access methods, such
as ALOHA and carrier-sense multiple access (CSMA).

With 15 chapters and a variety of topics, the instructor has the flexibility to
design either a one- or two-semester course. Chapters 3 through 6 provide a basic
treatment of digital modulation/demodulation and detection methods. Channel
coding, treated in Chapters 7 and 8, can be included along with modulation and
demodulation in a one-semester course. The topics of channel equalization, fad-
ing channels, spread spectrum, and multiuser communications can be covered in
a second-semester course.

Throughout my professional career, I have had the opportunity to work with
and learn from a number of people whom I should like to publicly acknowledge.
These include Dr. R. Price, P.R. Drouilhet, Jr., and Dr. P.E. Green, Jr., who
introduced me to various aspects of digital communications through fading

. 8-



multipath channels and multichannel signal transmission during my employment
at the MIT Lincoln Laboratory. I am also indebted to Professor D.W. Tufts,
who supervised my Ph.D. dissertation at Harvard University and who intro-
duced me to the problems of signal design and equalization for band-limited
channels. Over the years, I have had the pleasure of working on a variety of
research projects in collaboration with colleagues at GTE and Stein Associates,
including Dr. S. Stein, Dr. B. Barrow, Dr. A.A. Giordano, Dr. A.H. Levesque,
Dr. R. Greenspan, Dr. D. Freeman, P.H.Anderson, D. Gooding, and J.
Lindholm. At Northeastern University, I have had the benefit of collaborating
with Dr. M. Salehi, Dr. M. Stojanovic, and Dr. D. Brady. Dr. T. Schonhoff
provided the graphs illustrating the spectral characteristics of CPFSK, and H.
Gibbons provided the data for the graphs in Chapter 14 that show the perfor-
mance of PSK and DPSK with diversity. The assistance of these colleagues is
greatly appreciated.

McGraw-Hill and T would like to thank the following reviewers of this
edition for their valuable suggestions: William E. Ryan, University of Arizona,
Tan Wong, University of Florida; and Raymond Pickholtz, George Washington
University.

Finally, I wish to express my appreciation to Gloria Doukakis, for typing the
manuscript of this edition, and to Apostolos Rizos for preparing the Solutions
Manual.
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