FIFERACIEST (FR)

Understanding
and Using

/‘-'.
o3

C Pointersg =

O’REILLY*®
% B %% HrRit Richard Reese %

FIFEAGES won

Understanding and Using C Pointers

Richard Reese &

O’REILLY"

ulhg Mndge Farnham - KolIn - Sebastopol - Tokyo
raman}y Media, Inc. 4404 y X 5 th Bk th K

MR FEAF MR

BEBERRE (CIP) ¥

HFER CHREE: HC/(R)EH (Reese, R)ZE . —52
BN . —msl: ZREER¥E MR, 2014.1

447 3C: Understanding and Using C Pinters

ISBN 978-7-5641-4603-0

LO % ILOF ILOCES-BFXH-%&
3 IV. ® TP312

W E Rl A B 4518 CIP Hdg iz ¥ (2013) 58 246096 5

LI ERRBURE R & R
E¥: 10-2013-381 5

©2013 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2014. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights

to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
* LR Wiy O’Reilly Media, Inc. # 3 2013,

KXY G A& d kg kA R 2014, 3% 6P RR 49 B Ao 4K 4R 13 2] ok BRAA 4K & AR &) BT R & —— O’Reilly
Media, Inc. 8% T,

BAFTA , AFHEHFT, KAFHGEFTHRS o 2R AUETH X EH,

FOMEM CHes GEENR)

HAREAT: ZREERFH R

H ik P2 5 B4R : 210096
AR A {TEH

i3] 3k . http://www.seupress.com

HL,F-Hi {4 . press@seupress.com

Efl R : % EDRIA BR 2 F]

H A T8TEEK x 980K 16 A&

En k. 14.25

F . 219FF

B k. 20144E 1 HE 1R

EN K. 20144 1 A% 1 RENRI

+ 5 : ISBN 978-7-5641-4603-0

£ . 46.00 T (1)

At E A AN R, 1§ ERESEHTBKA. B ((FH). 025-83791830

Preface

C is an important language and has had extensive treatment over the years. Central to
the language are pointers that provide much of the flexibility and power found in the
language. It provides the mechanism to dynamically manipulate memory, enhances
support for data structures, and enables access to hardware. This power and flexibility
comes with a price: pointers can be difficult to master.

Why This Book Is Different

Numerous books have been written about C. They usually offer a broad coverage of the
language while addressing pointers only to the extent necessary for the topic at hand.
Rarely do they venture beyond a basic treatment of pointers and most give only cursory
coverage of the important memory management technology involving the stack and
the heap. Yet without this discussion, only an incomplete understanding of pointers can
be obtained. The stack and heap are areas of memory used to support functions and
dynamic memory allocation, respectively.

Pointers are complex enough to deserve more in-depth treatment. This book provides
that treatment by focusing on pointers to convey a deeper understanding of C. Part of
this understanding requires a working knowledge of the program stack and heap along
with the use of pointers in this context. Any area of knowledge can be understood at
varying degrees, ranging from a cursory overview to an in-depth, intuitive understand-
ing. That higher level of understanding for C can only be achieved with a solid under-
standing of pointers and the management of memory.

The Approach

Programming is concerned with manipulating data that is normally located in memory.
It follows that a better understanding of how C manages memory will provide insight
that translates to better programming. While it is one thing to know that the malloc
function allocates memory from the heap, it is another thing to understand the

implications of this allocation. If we allocate a structure whose logical size is 45, we may
be surprised to learn that more than 45 bytes are typically allocated and the memory
allocated may be fragmented.

When a function is called, a stack frame is created and pushed onto the program stack.
Understanding stack frames and the program stack will clarify the concepts of passing
by value and passing by pointer. While not necessarily directly related to pointers, the
understanding of stack frames also explains how recursion works.

To facilitate the understanding of pointers and memory management techniques, var-
ious memory models will be presented. These range from a simple linear representation
of memory to more complex diagrams that illustrate the state of the program stack and
heap for a specific example. Code displayed on a screen or in a book is a static repre-
sentation of a dynamic program. The abstract nature of this representation is a major
stumbling block to understanding a program’s behavior. Memory models go a long way
to helping bridge this gap.

Audience

The Clanguage is a block structured language whose procedural aspects are shared with
most modern languages such as C++ and Java. They all use a program stack and heap.
They all use pointers, which are often disguised as references. We assume that you have
a minimal understanding of C. If you are learning C, then this book will provide you
with a more comprehensive treatment of pointers and memory than is found in other
books. It will expand your knowledge base regarding C and highlight unfamiliar aspects
of C. If you are a more experienced C or C++ programmer, this book will help you fill
in possible gaps regarding C and will enhance your understanding of how they work
“under the hood,” thus making you a better programmer. If you are a C# or Java devel-
oper, this book will help you better understand C and provide you with insight into how
object-oriented languages deal with the stack and the heap.

Organization

The book is organized along traditional topics such as arrays, structures, and functions.
However, each chapter focuses on the use of pointers and how memory is managed. For
example, passing and returning pointers to and from functions are covered, and we also
depict their use as part of stack frames and how they reference memory in the heap.

Chapter 1, Introduction
This chapter covers pointer basics for those who are not necessarily proficient or
are new to pointers. This includes pointer operators and the declaration of different
types of pointers such as constant pointers, function pointers, and the use of NULL
and its closely related variations. This can have a significant impact on how memory
is allocated and used.

x | Preface

Chapter 2, Dynamic Memory Management in C
Dynamic memory allocation is the subject of Chapter 2. The standard memory
allocation functions are covered along with techniques for dealing with the deal-
location of memory. Effective memory deallocation is critical to most applications,
and failure to adequately address this activity can result in memory leaks and dan-
gling pointers. Alternative deallocation techniques, including garbage collection
and exception handlers, are presented.

Chapter 3, Pointers and Functions
Functions provide the building blocks for an application’s code. However, passing
or returning data to and from functions can be confusing to new developers. This
chapter covers techniques for passing data, along with common pitfalls that occur
when returning information by pointers. This is followed by extensive treatment
of function pointers. These types of pointers provide yet another level of control
and flexibility that can be used to enhance a program.

Chapter 4, Pointers and Arrays
While array notation and pointer notation are not completely interchangeable, they
are closely related. This chapter covers single and multidimensional arrays and how
pointers are used with them. In particular, passing arrays and the various nuisances
involved in dynamically allocating arrays in both a contiguous and a noncontiguous
manner are explained and illustrated with different memory models.

Chapter 5, Pointers and Strings
Strings are an important component of many applications. This chapter addresses
the fundamentals of strings and their manipulation with pointers. The literal pool
and its impact on pointers is another often neglected feature of C. Illustrations are
provided to explain and illuminate this topic.

Chapter 6, Pointers and Structures
Structures provide a very useful way of ordering and manipulating data. Pointers
enhance the utility of structures by providing more flexibility in how they can be
constructed. This chapter presents the basics of structures as they relate to memory
allocation and pointers, followed by examples of how they can be used with various
data structures.

Chapter 7, Security Issues and the Improper Use of Pointers
As powerful and useful as pointers can be, they are also the source of many security
problems. In this chapter, we examine the fundamental problems surrounding
buffer overflow and related pointer issues. Techniques for mitigating many of these
problems are presented.

Preface | xi

Chapter 8, Odds and Ends
The last chapter addresses other pointer techniques and issues. While C is not an
object-oriented language, many aspects of object-oriented programming can be
incorporated into a C program, including polymorphic behavior. The essential el-
ements of using pointers with threads are illustrated. The meaning and use of the
restrict keyword are covered.

Summary

This book is intended to provide a more in-depth discussion of the use of pointers than
is found in other books. It presents examples ranging from the core use of pointers to
obscure uses of pointers and identifies common pointer problems.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xii | Preface

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Understanding and Using C Pointers by
Richard Reese (O'Reilly). Copyright 2013 Richard Reese, Ph.D. 978-1-449-34418-4”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

. «% Safari Books Online (www.safaribooksonline.com) is an on-demand

Safa Il digital library that delivers expert content in both book and video
BooksOnline form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xiii

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Understand_Use_CPointers.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

Table of Contents

PIORER s snnn swmim ok supmmmsvnimsusewsmaes s R s b sy e s ix
TR T R S SR SRS ST ———— 1
Pointers and Memory 2
Why You Should Become Proficient with Pointers 3
Declaring Pointers 5
How to Read a Declaration 7
Address of Operator 8
Displaying Pointer Values 9
Dereferencing a Pointer Using the Indirection Operator 11
Pointers to Functions 11

The Concept of Null 11
Pointer Size and Types 15
Memory Models 16
Predefined Pointer-Related Types 16
Pointer Operators 20
Pointer Arithmetic 20
Comparing Pointers 25
Common Uses of Pointers 25
Multiple Levels of Indirection 25
Constants and Pointers 27
Summary 32

2 Dynamic Memory Management W C. . . o o s on s va voiavms s wme s wae s s wnm o0 33
Dynamic Memory Allocation 34
Memory Leaks 37
Dynamic Memory Allocation Functions 39
Using the malloc Function 39

Using the calloc Function 43

Using the realloc Function

The alloca Function and Variable Length Arrays
Deallocating Memory Using the free Function

Assigning NULL to a Freed Pointer

Double Free

The Heap and System Memory

Freeing Memory upon Program Termination
Dangling Pointers

Dangling Pointer Examples

Dealing with Dangling Pointers

Debug Version Support for Detecting Memory Leaks
Dynamic Memory Allocation Technologies

Garbage Collection in C

Resource Acquisition Is Initialization

Using Exception Handlers
Summary

Polnters and FUNCHONS, 5 iviiiseisnsasmsnisan sasisadosiin s viis

Program Stack and Heap
Program Stack
Organization of a Stack Frame
Passing and Returning by Pointer
Passing Data Using a Pointer
Passing Data by Value
Passing a Pointer to a Constant
Returning a Pointer
Pointers to Local Data
Passing Null Pointers
Passing a Pointer to a Pointer
Function Pointers
Declaring Function Pointers
Using a Function Pointer
Passing Function Pointers
Returning Function Pointers
Using an Array of Function Pointers
Comparing Function Pointers
Casting Function Pointers
Summary

FOIMBS 00 AT, v 00556 sunsnmmmssboatmansinssms i soshliaani

Quick Review of Arrays
One-Dimensional Arrays

44
46
47
48
48
50
50
51
51
53
54
54
55
55
56
56

57
58
58
29
61
62
62
63
64
66
67
68
71
72
73
74
75
76
7
74
78

79
80
80

iv

| Table of Contents

Two-Dimensional Arrays 81

Multidimensional Arrays 82
Pointer Notation and Arrays 83
Differences Between Arrays and Pointers 85
Using malloc to Create a One-Dimensional Array 86
Using the realloc Function to Resize an Array 87
Passing a One-Dimensional Array 90
Using Array Notation 90
Using Pointer Notation 91
Using a One-Dimensional Array of Pointers 92
Pointers and Multidimensional Arrays 94
Passing a Multidimensional Array 96
Dynamically Allocating a Two-Dimensional Array 99
Allocating Potentially Noncontiguous Memory 100
Allocating Contiguous Memory 100
Jagged Arrays and Pointers 102
Summary 105
e POMTEES B STANGS. s w6 s o o0 o mwn oiw oo vvn VAT TR DR Bbommasmnins nia s siwn wis 107
String Fundamentals 107
String Declaration 108
The String Literal Pool 109
String Initialization 110
Standard String Operations 114
Comparing Strings 115
Copying Strings 116
Concatenating Strings 118
Passing Strings 121
Passing a Simple String 121
Passing a Pointer to a Constant char 123
Passing a String to Be Initialized 123
Passing Arguments to an Application 125
Returning Strings 126
Returning the Address of a Literal 126
Returning the Address of Dynamically Allocated Memory 128
Function Pointers and Strings 130
Summary 132
i POMTURES ADA SINCIINES. . sss v siss snsinns omi snobss iFDik s sinn as o s nns suibass 133
Introduction 133
How Memory Is Allocated for a Structure 135
Structure Deallocation Issues 136

Table of Contents | v

Avoiding malloc/free Overhead

Using Pointers to Support Data Structures
Single-Linked List
Using Pointers to Support a Queue
Using Pointers to Support a Stack
Using Pointers to Support a Tree
Summary

Security Issues and the Improper Use of Pointers.

Pointer Declaration and Initialization
Improper Pointer Declaration
Failure to Initialize a Pointer Before It Is Used
Dealing with Uninitialized Pointers
Pointer Usage Issues
Test for NULL
Misuse of the Dereference Operator
Dangling Pointers
Accessing Memory Outside the Bounds of an Array
Calculating the Array Size Incorrectly
Misusing the sizeof Operator
Always Match Pointer Types
Bounded Pointers
String Security Issues
Pointer Arithmetic and Structures
Function Pointer Issues
Memory Deallocation Issues
Double Free
Clearing Sensitive Data
Using Static Analysis Tools
Summary

O0RAS AN ENTS: : o 5 500 5.0 5055 555 6508 5i0s 55006 530,826 oitis 60ais ke 5806 s 8.0.57%

Casting Pointers
Accessing a Special Purpose Address
Accessing a Port
Accessing Memory using DMA
Determining the Endianness of a Machine
Aliasing, Strict Aliasing, and the restrict Keyword
Using a Union to Represent a Value in Multiple Ways
Strict Aliasing
Using the restrict Keyword
Threads and Pointers

139
141
142
149
152
154
158

159
160
160
161
162
162
163
163
164
164
165
166
166
167
168
169
170
172
172
173
173
174

175
176
177
178
179
180
180
182
183
184
185

vi

| Table of Contents

Sharing Pointers Between Threads 186

Using Function Pointers to Support Callbacks 188
Object-Oriented Techniques 190
Creating and Using an Opaque Pointer 190
Polymorphism in C 194
Summary 199
MR, cix s amimssis issncns i womames b s sors S s s s E I SN S AR SRS B8 201

Table of Contents | vii

Y

CHAPTER 1
Introduction

A solid understanding of pointers and the ability to effectively use them separates a
novice C programmer from a more experienced one. Pointers pervade the language and
provide much of its flexibility. They provide important support for dynamic memory
allocation, are closely tied to array notation, and, when used to point to functions, add
another dimension to flow control in a program.

Pointers have long been a stumbling block in learning C. The basic concept of a pointer
is simple: it is a variable that stores the address of a memory location. The concept,
however, quickly becomes complicated when we start applying pointer operators and
try to discern their often cryptic notations. But this does not have to be the case. If we
start simple and establish a firm foundation, then the advanced uses of pointers are not
hard to follow and apply.

The key to comprehending pointers is understanding how memory is managed ina C
program. After all, pointers contain addresses in memory. If we don’t understand how
memory is organized and managed, it is difficult to understand how pointers work. To
address this concern, the organization of memory is illustrated whenever it is useful to
explain a pointer concept. Once you have a firm grasp of memory and the ways it can
be organized, understanding pointers becomes a lot easier.

This chapter presents an introduction to pointers, their operators, and how they interact
with memory. The first section examines how they are declared, the basic pointer oper-
ators, and the concept of null. There are various types of “nulls” supported by C so a
careful examination of them can be enlightening.

The second section looks more closely at the various memory models you will un-
doubtedly encounter when working with C. The model used with a given compiler and
operating system environment affects how pointers are used. In addition, we closely
examine various predefined types related to pointers and the memory models.

Pointer operators are covered in more depth in the next section, including pointer
arithmetic and pointer comparisons. The last section examines constants and pointers.
The numerous declaration combinations offer many interesting and often very useful
possibilities.

Whether you are a novice C programmer or an experienced programmer, this book will
provide you with a solid understanding of pointers and fill the gaps in your education.
The experienced programmer will want to pick and choose the topics of interest. The
beginning programmer should probably take a more deliberate approach.

Pointers and Memory

When a C program is compiled, it works with three types of memory:

Static/Global
Statically declared variables are allocated to this type of memory. Global variables
also use this region of memory. They are allocated when the program starts and
remain in existence until the program terminates. While all functions have access
to global variables, the scope of static variables is restricted to their defining func-
tion.

Automatic
These variables are declared within a function and are created when a function is
called. Their scope is restricted to the function, and their lifetime is limited to the
time the function is executing.

Dynamic
Memory is allocated from the heap and can be released as necessary. A pointer
references the allocated memory. The scope is limited to the pointer or pointers
that reference the memory. It exists until it is released. This is the focus of Chapter 2.

Table 1-1 summarizes the scope of and lifetime of variables used in these memory
regions.

Table 1-1. Scope and lifetime

Lifetime
Global The entire file The lifetime of the application
Static The function it is declared within The lifetime of the application
Automatic (local) The function it is declared within While the function is executing
Dynamic Determined by the pointers that reference this memory Until the memory is freed

Understanding these types of memory will enable you to better understand how pointers
work. Most pointers are used to manipulate data in memory. Understanding how mem-
ory is partitioned and organized will clarify how pointers manipulate memory.

2 | Chapter 1: Introduction

