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ITAS/Park City
Mathematics Institute

The IAS/Park City Mathematics Institute (PCMI) was founded in
1991 as part of the “Regional Geometry Institute” initiative of the
National Science Foundation. In mid-1993 the program found an in-
stitutional home at the Institute for Advanced Study (IAS) in Prince-
ton, New Jersey. The PCMI continues to hold summer programs in
Park City, Utah.

The IAS/Park City Mathematics Institute encourages both re-
search and education in mathematics and fosters interaction between
the two. The three-week summer institute offers programs for re-
searchers and postdoctoral scholars, graduate students, undergradu-
ate students, high school teachers, mathematics education research-
ers, and undergraduate faculty. One of PCMI’s main goals is to make
all of the participants aware of the total spectrum of activities that
occur in mathematics education and research: we wish to involve pro-
fessional mathematicians in education and to bring modern concepts
in mathematics to the attention of educators. To that end the sum-
mer institute features general sessions designed to encourage interac-
tion among the various groups. In-year activities at sites around the
country form an integral part of the High School Teacher Program.
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Each summer a different topic is chosen as the focus of the Re-
search Program and Graduate Summer School. Activities in the Un-
dergraduate Program deal with this topic as well. Lecture notes from
the Graduate Summer School are published each year in the IAS /Park
City Mathematics Series. Course materials from the Undergraduate
Program, such as the current volume, are now being published as
part of the IAS/Park City Mathematical Subseries in the Student
Mathematical Library. We are happy to make available more of the
excellent resources which have been developed as part of the PCMI.

John Polking, Series Editor
April 13, 2009



Preface

About 30 years ago, the field of 3-dimensional topology was revo-
lutionized by Thurston’s Geometrization Theorem and by the unex-
pected appearance of hyperbolic geometry in purely topological prob-
lems. This book aims at introducing undergraduate students to some
of these striking developments. It grew out of notes prepared by the
author for a three-week course for undergraduates that he taught at
the Park City Mathematical Institute in June-July 2006. It covers
much more material than these lectures, but the written version in-
tends to preserve the overall spirit of the course. The ultimate goal,
attained in the last chapter, is to bring the students to a level where
they can understand the statements of Thurston’s Geometrization
Theorem for knot complements and, more generally, of the general
Geometrization Theorem for 3-dimensional manifolds recently proved
by G. Perelman. Another leading theme is the intrinsic beauty of
some of the mathematical objects involved, not just mathematically
but visually as well.

The first two-thirds of the book are devoted to 2-dimensional
geometry. After a brief discussion of the geometry of the euclidean
plane R?, the hyperbolic plane H2, and the sphere S?, we discuss the
construction of locally homogeneous spaces by gluing the sides of a
polygon. This leads to the investigation of the tessellations that are
associated to such constructions, with a special focus on one of the

xiii



xiv Preface

most beautiful objects of mathematics, the Farey tessellation of the
hyperbolic plane. At this point, the deformations of the Farey tessel-
lation by shearing lead us to jump to one dimension higher, in order
to allow bending. After a few generalities on the 3-dimensional hy-
perbolic space H?, we consider the crooked tessellations obtained by
bending the Farey tessellation, which naturally leads us to discussing
kleinian groups and quasi-fuchsian groups. Pushing the bending of
the Farey tessellation to the edge of kleinian groups, we reach the fa-
mous example associated to the complement of the figure-eight knot.
At this point, we are ready to explain that this example is a manifes-
tation of a general phenomenon. We state Thurston’s Geometrization
Theorem for knot complements, and illustrate how it has revolution-
ized knot theory in particular through the use of Ford domains. The
book concludes with a discussion of the very recently proved Ge-
ometrization Theorem for 3-dimensional manifolds.

We tried to strike a balance between mathematical intuition and
rigor. Much of the material is unapologetically “picture driven”, as
we intended to share our own enthusiasm for the beauty of some of
the mathematical objects involved. However, we did not want to
sacrifice the other foundation of mathematics, namely, the level of
certainty provided by careful mathematical proofs. One drawback
of this compromise is that the exposition is occasionally interrupted
with a few proofs which are more lengthy than difficult, but can
somewhat break the flow of the discourse. When this occurs, the
reader is encouraged, on a preliminary reading, to first glance at the
executive summary of the argument that is usually present at its

beginning, and then to grab the remote control @"’A and press the
“fast forward” button until the first occurrence of the closing symbol

/‘ . The reader may later need to return to some of the parts that
have thus been zapped through, for the sake of mathematical rigor or
because subsequent parts of the book may refer to specific arguments
or definitions in these sections. For the same reason, the book is not
intended to be read in a linear way. The reader is strongly advised to
generously skip, at first, much of the early material in order to reach

the parts with pretty pictures, such as Chapters 5, 6, 8, 10 or 11, as



Preface XV

quickly as possible, and then to backtrack when specific definitions
or arguments are needed.

The book also has its idiosyncrasies. From a mathematical point
of view, the main one involves quotients of metric spaces. It is tradi-
tional here to focus only on topological spaces, to introduce the quo-
tient topology by fiat, and then to claim that it accurately describes
the intuitive notion of gluing in cut-and-paste constructions; this is
not always very convincing. A slightly less well-trodden road involves
quotient metric spaces, but only in the case of quotients under dis-
continuous group actions. We decided to follow a different strategy,
by discussing quotient (semi-)metrics very early on and in their full
generality. This approach is, in our view, much more intuitive but
it comes with a price: Some proofs become somewhat technical. On
the one hand, these can serve as a good introduction to the tech-
niques of rigorous proofs in mathematics. On the other hand, the
reader pressed for time can also take advantage of the fast-forward
commands where indicated, and zap through these proofs in a first
reading.

From a purely technical point of view, the text is written in such
a way that, in theory, it does not require much mathematical know-
ledge beyond multivariable calculus. An appendix at the end pro-
vides a “tool kit” summarizing some of the main concepts that will
be needed. In practice, however, the mathematical rigor of many ar-
guments is likely to require a somewhat higher level of mathematical
sophistication. The reader will also notice that the level of difficulty
progressively increases as one proceeds from early to later chapters.
Each chapter ends with a selection of exercises, a few of which can
be somewhat challenging. The idea was to provide material suitable
for an independent study by a dedicated undergraduate student, or
for a topics course. Such a course might cover the main sections of
Chapters 1-7, 9, 12, and whichever parts of the remaining chapters
would be suitable for both the time available and the tastes of the
instructor.

The author is delighted to thank Roger Howe for tricking him into
believing that the PCMI course would not require that much work
(which turned out to be wrong), and Ed Dunne for encouraging him
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to turn the original lecture notes into a book and for warning him that
the task would be very labor intensive (which turned out to be right).
The general form of the book owes much to the feedback received from
the students and faculty who attended the PCMI lectures, and who
were used as “guinea pigs”; this includes Chris Hiatt, who was the
teaching assistant for the course. Dave Futer provided numerous and
invaluable comments on an earlier draft of the manuscript, Roland
van der Veen contributed a few more, and Jennifer Wright Sharp
polished the final version with her excellent copy-editing. Finally,
the mathematical content of the book was greatly influenced by the
author’s own research in this area of mathematics, which in recent
years was partially supported by Grants 0103511 and 0604866 from
the National Science Foundation.
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Chapter 1

The euclidean plane

We are all very familiar with the geometry of the euclidean plane R2.
We will encounter a new type of 2-dimensional geometry in the next
chapter, that of the hyperbolic plane H2. In this chapter, we first
list a series of well-known properties of the euclidean plane which,
in the next chapter, will enable us to develop the properties of the
hyperbolic plane in very close analogy.

Before proceeding, you are advised to briefly consult the TooL
KiIT in the appendix for a succinct review of the basic definitions and
notation concerning set theory, infima and suprema of sets of real
numbers, and complex numbers.

1.1. Euclidean length and distance

The euclidean plane is the set
R? = {(z,y); 7,y € R}

consisting of all ordered pairs (z,y) of real numbers z and y.

If v is a curve in R?, parametrized by the differentiable vector-
valued function

t— (z(t),y(t)), a<t<b,

1



2 1. The euclidean plane

YA

A

Figure 1.1. The euclidean plane

its euclidean length (...(7) is the arc length given by

b
(1.1) louc(7) = / VZO? ¥y R dt.

This length is independent of the parametrization by a well-known
consequence of the chain rule.

It will be convenient to consider piecewise differentiable curves
v made up of finitely many differentiable curves Y1, Y25 - - -, Yn Such
that the initial point of each 7, is equal to the terminal point of ~;.
In other words, such a curve + is differentiable everywhere except at
finitely many points, corresponding to the endpoints of the v;, where
it is allowed to have a “corner” (but no discontinuity). In this case,
the length £, (7) of the piecewise differentiable curve v is defined as
the sum of the lengths feyc(7;) of its differentiable pieces v;. This
is equivalent to allowing the integrand in (1.1) to be undefined at
finitely many values of ¢t where, however, it has finite left-hand and
right-hand limits.

The euclidean distance de,.(P, Q) between two points P and
@ is the infimum of the lengths of all piecewise differentiable curves
7 going from P to Q, namely

(1.2) deuc(P, Q) = inf {feyc(7); v goes from P to Q}.



