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Preface

This volume continues our series of texts devoted to functional analysis
methods in mathematical physics. In Volume I we announced a table of
contents for Volume II. However, in the preparation of the material it
became clear that we would be unable to treat the subject matter in
sufficient depth in one volume. Thus, the volume contains Chapters IX and X;
we expect that a third volume will appear in the near future containing
the rest of the material announced as “Analysis of Operators.” We hope
to continue this series with an additional volume on algebraic methods.

It gives us pleasure to thank many individuals:

E. Nelson for a critical reading of Chapter X; W. Beckner, H. Kalf,
R. S. Phillips, and A. S. Wightman for critically reading one or more
sections.

Numerous other colleagues for contributing valuable suggestions.

F. Armstrong for typing most of the preliminary manuscript.

J. Hagadorn, R. Israel, and R. Wolpert for helping us with the proof-
reading.

Academic Press for its aid and patience; the National Science and Alfred
P. Sloan Foundations for financial support.

Jackie and Martha for their encouragement and understanding,

MIKE REED
BARRY SIMON

June 1975
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Introduction

A functional analyst is an analyst, first and foremost, and not a degenerate species of topologist.
E. Hille

Most texts in functional analysis suffer from a serious defect that is shared
to an extent by Volume I of Methods of Modern Mathematical Physics.
Namely, the subject is presented as an abstract, elegant corpus generally
divorced from applications. Consequently, the students who learn from these
texts are ignorant of the fact that almost all deep ideas in functional analysis
have their immediate roots in “applications,” either to classical areas of
analysis such as harmonic analysis or partial differential equations, or to
another science, primarily physics. For example, it was classical electro-
magnetic potential theory that motivated Fredholm’s work on integral
equations and thereby the work of Hilbert, Schmidt, Weyl, and Riesz on the
abstractions of Hilbert space and compact operator theory. And it was the
impetus of quantum mechanics that led von Neumann to his development
of unbounded operators and later to his work on operator algebras.

More deleterious than historical ignorance is the fact that students
are too often misled into believing that the most profitable directions for
research in functional analysis are the abstract ones. In our opinion, exactly
the opposite is true. We do not mean to imply that abstraction has no
role to play. Indeed, it has the critical role of taking an idea from a
concrete situation and, by eliminating the extraneous notions, making the
idea more easily understood as well as applicable to a broader range of
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x INTRODUCTION

situations. But it is the study of specific applications and the consequent
generalizations that have been the more important, rather than the considera-
tion of abstract questions about abstract objects for their own sake.

This volume contains a mixture of abstract results and applications, while
the next contains mainly applications. The intention is to offer the readers
of the whole series a properly balanced view.

We hope that this volume will serve several purposes: to provide an
introduction for graduate students not previously acquainted with the
material, to serve as a reference for mathematical physicists already working
in the field, and to provide an introduction to various advanced topics
which are difficult to understand in the literature. Not all the techniques
and applications are treated in the same depth. In general, we give a very
thorough discussion of the mathematical techniques and applications in
quantum mechanics, but provide only an introduction to the problems
arising in quantum field theory, classical mechanics, and partial differential
equations. Finally, some of the material developed in this volume will not
find application until Volume III. For all these reasons, this volume contains
a great variety of subject matter. To help the reader select which material
is important for him, we have provided a “Reader’s Guide” at the end
of each chapter.

As in Volume I, each chapter contains a section of notes. The notes
give references to the literature and sometimes extend the discussion in the
text. Historical comments are always limited by the knowledge and prejudices
of authors, but in mathematics that arises directly from applications, the
problem of assigning credit is especially difficult. Typically, the history is
in two stages: first a specific method (typically difficult, computational,
and sometimes nonrigorous)is developed to handle a small class of problems.
Later it is recognized that the method contains ideas which can be used to
treat other problems, so the study of the method itself becomes important.
The ideas are then abstracted, studied on the abstract level, and the
techniques systematized. With the newly developed machinery the original
problem becomes an easy special case. In such a situation, it is often not
completely clear how many of the mathematical ideas were already contained
in the original work. Further, how one assigns credit may depend on
whether one first learned the technique in the old computational way or in
the new easier but more abstract way. In such situations, we hope that
the reader will treat the notes as an introduction to the literature and
not as a judgment of the historical value of the contributions in the papers
cited.

Each chapter ends with a set of problems. As in Volume I, parts of
proofs are occasionally left to the problems to encourage the reader to
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participate in the development of the mathematics. Problems that fill gaps
in the text are marked with a dagger. Difficult problems are marked with
an asterisk. We strongly urge students to work the problems since that
is the best way to learn mathematics.



METHODS OF MODERN MATHEMATICAL PHYSICS

Il: FOURIER ANALYSIS, SELF-ADJOINTNESS



Contents

Preface vii
Introduction ix
Contents of Other Volumes Xv

IX: THE FOURIER TRANSFORM

1. The Fourier transform on ¥ (R") and &'(R"), convolutions 1
2. The range of the Fourier transform: Classical spaces 9
3. The range of the Fourier transform: Analyticity 15
4. I? Estimates 27
Appendix  Abstract interpolation 32
5. Fundamental solutions of partial differential equations
with constant coefficients 45
6. Elliptic regularity 49
7. The free Hamiltonian for nonrelativistic quantum
mechanics 54
8. The Garding-Wightman axioms 61
Appendix  Lorentz invariant measures 72
9. Restriction to submanifolds 76
10.  Products of distributions, wave front sets, and oscillatory
integrals 87
Notes 108
Problems 120
Reader’s Guide 133

xiii



xiv CONTENTS

X: SELF-ADJOINTNESS AND THE EXISTENCE OF DYNAMICS

1. Extensions of symmetric operators 135
Appendix Motion on a half-line, limit point-limit circle
methods 146
2. Perturbations of self-adjoint operators 162
3. Positivity and self-adjointness I: Quadratic forms 176
4. Positivity and self-adjointness I1: Pointwise positivity 182
5. The commutator theorem 191
6. Analytic vectors 200
7. Free quantum fields 207
Appendix The Weyl relations for the free field : 231
8. Semigroups and their generators 235
9. Hypercontractive semigroups ' 258
10. Graph Limits 268
11. The Feynman-Kac formula 274
12.  Time-dependent Hamiltonians 282
13.  Classical nonlinear wave equations 293
14. The Hilbert space approach to classical mechanics 313
Notes 318
Problems 338
Reader’s Guide 349
List of Symbols 353

Index 355



Contents of Other Volumes

Volume |: Functional Analysis

I Preliminaries
Il Hilbert Spaces
II1  Banach Spaces
IV Topological Spaces
V' Locally Convex Spaces
VI Bounded Operators
VII The Spectral Theorem
VIII Unbounded Operators

Volume lll: Analysis of Operators

X1 Perturbations of Point Spectra
XII Scattering Theory
XIII Spectral Analysis

Later Volumes

X1V  Group Representations
XV Commutative Banach Algebras
XVI Convex Sets
XVII The GNS Construction
XVIII Von Neumann Algebras
XIX Applications to Quantum Field Theory
XX Applications to Statistical Mechanics

XV



IX: The Fourier Transform

We have therefore the equation of condition

F(x) = | dq Q cos gx

If we substituted for Q any function of q, and conducted the integration from q=0 to q = oo,
we should find a function of x: it is required to solve the inverse problem, that is to say, to
ascertain what function of q, after being substituted for Q, gives as a result the function F(x),
a remarkable problem whose solution demands attentive examination. Joseph Fourier

IX.1 The Fourier transform on #(R") and ¥'(R"),convolutions

The Fourier transform is an important tool of both classical and modern
analysis. We begin by defining it, and the inverse transform, on &(R"),
the Schwartz space of C* functions of rapid decrease.

Peﬁnition Suppose fe #(R"). The Fourier transform of fis the function
[ given by

fx)= @tl)ﬁ [R"e“"“f(x) dx

where x +A = )7_, x;4;. The inverse Fourier transform of f, denoted by
£, is the function

fo)= (27:)"/2 ‘[R.e""'*f(x) dx

We will occasionally write f = Z .




2 IX: THE FOURIER TRANSFORM

Since every function in Schwartz space is in [!(R"), the above integrals
make sense. Many authors begin by discussing the Fourier transform on
L'(R™). We start with Schwartz space for two reasons: First, the Fourier
transform is a one-to-one map of Schwartz space onto itself (Theorem IX.1).
This makes it particularly easy to talk about the inverse Fourier transform,
which of course turns out to be the inverse map. That is, on Schwartz
space, it is possible to deal with the transform and the inverse transform
on an equal footing. Though this is also true for the Fourier transform on
2(R") (see Theorem IX.6), it is not possible to define the Fourier transform
on I?(R") directly by the integral formula since I?(R") functions may not
be in L' (R"); a limiting procedure must be used. Secondly, once we know
that the Fourier transform is a one-to-one, bounded map of #(R") onto
Z(R"), we can easily extend it to &'(R"). It is this extension that is funda-
mental to the applications in Sections 5, 6, and 8.

We will use the standard multi-index notation. A multi-index

00 =0y enny Uy
is an n-tuple of nonnegative integers. The collection of all multi-indices
will be denoted by I", . The symbols |«|, x*, D% and x? are defined as follows:

n
|| = Z“i
i=1

Xt = x"l‘lx%z e x:n

ol
b= Ox% @x%2 -+ 0x%
e 2 n
n
x* =Y x}
i=1

In preparation for the proof that ~ and ~ are inverses, we prove:

Lemma The maps ~and ~ are continuous linear transformations of
&(R") into &(R"). Furthermore, if « and f are multi-indices, then

((IAFDT)(2) = D((— ix)Pf (X)) (IX.1)
Proof The map ~ is clearly linear. Since
o = 1 a 2 —idx
(D)D) = | F(=ixPehof () dx
1 . 1 .
= @ i e P ()
_ (=iy

)& DU () dx



IX.1 The Fourier transform on #(R") and .#'(R"), convolutions 3

We conclude that

1 lep = SUP|}~’(Dﬂf Al < ,,,2. | DA(xPf)| dx < o

(27)
so  takes #(R") into #(R"), and we have also proven (IX.1). Furthermore,
if k is large enough, [ (1 + x?)™* dx < oo so that

1 k
110s'% (g [, a0 1D3(= 0010

= (‘2‘1)“ (J' (1+x%)* f’-")sep{(l +x2) XDy~ ixPf (x)])

Using Leibnitz’s rule we easily conclude that there exist multi-indices a;,
B; and constants c; so that

”i“:ﬂ < _;lcj”f”y. B,

Thus, ~ is bounded and by Theorem V.4 is therefore continuous. The
proof for is the same. |

We are now ready to prove the Fourier inversion theorem. The proof
we give uses the original idea of Fourier.

Theorem IX.1 (Fourier inversion theorem)  The Fourier transform is a
linear bicontinuous bijection from .Y’(R") onto #(R"). Its inverse map is

the inverse Fourier transform, i.e. f f= f

Proof We will prove thatf=f The proof thal_?=fis similar.j"=fimplies
that ~ is surjective andf:fimplies that ~ is injective. Since ~ and ~ are
continuous maps of #(R") into #(R"), it is sufficient to prove that 7=f
for [ contained in the dense set CF(R"). Let C, be the cube of volume
(2/e)" centered at the origin in R". Choose ¢ small enough so that the
support of [is contained in C,. Let
K, = {k € R|each k;/ne is an integer}

Then

flx)= 2 (Ge)y"2e™ =, f)(ze) e

ke K,

is just the Fourier series of f which converges uniformly in C, to fsince fis
continuously differentiable (Theorem I1.8). Thus

Zf(k“

) (1X.2)



