xitEngERrEagHz (R EDAR)

DATA STRUCTURES
AND ALGORITHMS

BRGNS HIE

= H ¥
Alfred V. Aho 28
John E. Hopcroft Z
Jeffrey D. Ullman

ATERFHARTE

DATA STRUCTURES
AND ALGORITHMS

HIES S H X
CE NP

ZS PP AR R RS 20 S o N O NULITE TRET T S 3L Tb €t AR K RN LD N 7
HUMBIRS N S FEARE S, WAl SE. f. BAFIL megh. R R AT P S e
& DR BMTEMBE STk, mdky. 8E. SMESNAET B, AR IR th 1k
B Fddi Bl . A 202 4R DL, A5 5K J 16 D A RICHE &5 4 15 B30 DR R v 4 2 A P e)™ 1 S
R S 2L DA ISELY o (N

A GRS VRN RE, ZATEER, EAHOCRBEM B S 5 B, ol M i3m0 TR
(F 5% NI -E 7

=

exclusively(except Taiwan, Hong Kong SAR and Macao SAR).
IR - rp e NRIEFEBEN (A6 v e 7 5
BT TREONT g R [E 5 3 HIX) BT,)

/ For sale and distribution in the People's Republic of China

X

ISBN 7-302-07564-6

II | || " PEARSON
| Addison

Wesley

Eﬁ. 40 , 007|: http://www. pearsoned. com

DATA STRUCTURES
AND ALGORITHMS

Addison

il -
ﬁﬁﬁ,m:_..gu_m T

RFHENBEEIESL BM AT (RER)

Data Structures and Algorithms

PIRGHESREE

Alfred V. Aho
Bell Laboratories Murray Hill, New Jersey
John E. Hopcroft

Cornell University Ithaca, New York

Jeffrey D. Ullman

Stanford University Stanford, California

BREXFH M
2| A

English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Data Structures and Algorithms, by Alfred V. Aho, John E. Hopcroft and Jeffrey
D. Ullman, Copyright © 1983
All Rights Reserved.

Published by arrangement with the original publisher, Addison-Wesley, publishing as Addison-Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

ZHZENR B Pearson Education (FAEHH HRERD BALTHEELKE R HRELT.

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).
RFHEARKMERA (FEFEPEEE. BRIV TBREFH
E&EiX) HELIT.

IERTEBUREENEREILS EF: 01-2003-3539

ZE A Pearson Education (154 8 HARE) BABFIIRE, EHREETFEHE.

EBERSE (CIP) ¥iiE

¥4 45 #4958 = Data Structures and Algorithms / [3£]FZ (Aho, A. V.), [FEIEE7RZ K4 (Hoperoft, J.

E.), [E]JE/RE (Ullman,J.D.) ¥F —REAE. —Jb: HEREHRME, 2003
(CREZWHHENEE BN E BB RS

ISBN 7-302-07564-6

I. % 1. OFf QFE- Qi . OFEEH—REER—FM —H L QHENMMT—EEE
B—#M—33x V. TP311.12

rhE R A EHE CIP #iEz T (2003) 28 100712 5

H AR & ERKFEHRA M b JERERRFEEFRE
http://www.tup.com.cn BB 4R: 100084
#EHM: (010) 62770175 ERFREE: (010) 6277 6969
RITHRIE: A4

Ep B &F: FHEHERFERI

& 9T &: =WmHEEITERAA

BB s BIEILR RATH

185X230 EP3k: 27.5 #@Em: 1

2003 £ 12 A 1A 2003 4E 12 A% 1 RENRI
ISBN 7-302-07564-6/TP * 5563

1~5000

40.00 7T

8 0 OF B Dk

i e W

A 21 g, HRZEENLHF. BRURGEENNEFHEEM#EN. ZFHPOE
SERM AL KIFF. ERAARREROAL, EREALFTREMNE. BFHE, A
BFRmBERALNEL, DRZIREEN. BilRESFHENEMERRE, ATk
B EEF R, HEEERHRHEBRE KA ESRREAM .

BEHERFHRAEN 1996 I8, SEAAFELHRAREE, BELRT “R¥EHEH
HEAY GEERBD” F—RF55EEE, 3 TEHAZEMRIGM . BA 21 e, &
MNAFEARBRFHEBEMBERMFSWVE, FOHERERM L, #—PF REERE, B&
B FBIFARR T, — B i H X T PG E A TR H R AR R A JHEE KRS
ZREMBE LM, ARAE “KREHENEETEIZLEM AT GLERRD”, UAEE.
GOV 3 KPR ER ARSI B OB RMBE LR BE RN EREEANLTEK, BEPR
0 BATHEAE E SN FALEE ML F A, DRIBRAHE RE T ENBEEIE L BEMRTIGY
EVRR)” MR L, EESERITENTE.

HEHER S AL
2002 £ 10 A

Preface

This book presents the data structures and algorithms that underpin much of
today’s computer programming. The basis of this book is the material con-
tained in the first six chapters of our earlier work, The Design and Analysis of
Computer Algorithms. We have expanded that coverage and have added
material on algorithms for external storage and memory management. As a
consequence, this book should be suitable as a text for a first course on data
structures and algorithms. The only prerequisite we assume is familiarity with
some high-level programming language such as Pascal. '

We have attempted to cover data structures and algorithms in the broader
context of solving problems using computers. We use abstract data types
informally in the description and implementation of algorithms. Although
abstract data types are only starting to appear in widely available program-
ming languages, we feel they are a useful tool in designing programs, no
matter what the language.

We also introduce the ideas of step counting and time complexity as an
integral part of the problem solving process. This decision reflects our long-
held belief that programmers are going to continue to tackle problems of pro-
gressively larger size as machines get faster, and that consequently the time
complexity of algorithms will become of even greater importance, rather than
of less importance, as new generations of hardware become available.

The Presentation of Algorithms

We have used the conventions of Pascal to describe our algorithms and data
structures primarily because Pascal is so widely known. Initially we present
several of our algorithms both abstractly and as Pascal programs, because we
feel it is important to run the gamut of the problem solving process from prob-
lem formulation to a running program. The algorithms we present, however,
can be readily implemented in any high-level programming language.

Use of the Book

Chapter 1 contains introductory remarks, including an explanation of our view
of the problem-to-program process and the role of abstract data types in that
process. Also appearing is an introduction to step counting and ‘‘big-oh’ and
“big-omega’’ notation.

Chapter 2 introduces the.traditional list, stack and queue structures, and
the mapping, which is an abstract data type based on the mathematical notion
of a function. The third chapter introduces trees and the basic data structures

vi PREFACE

that can be used to support various operations on trees efficiently.

Chapters 4 and 5 introduce a number of important abstract data types that
are based on the mathematical model of a set. Dictionaries and priority
queues are covered in depth. Standard implementations for these concepts,
including hash tables, binary search trees, partially ordered trees, tries, and
2-3 trees are covered, with the more advanced material clustered in Chapter 5.

Chapters 6 and 7 cover graphs, with directed graphs in Chapter 6 and
undirected graphs in 7. These chapters begin a section of the book devoted
more to issues of algorithms than data structures, although we do discuss the
basics of data structures suitable for representing graphs. A number of impor-
tant graph algorithms are presented, including depth-first search, finding
minimal spanning trees, shortest paths, and maximal matchings.

Chapter 8 is devoted to the principal internal sorting algorithms: quick-
sort, heapsort, binsort, and the simpler, less efficient methods such as inser-
tion sort. In this chapter we also cover the linear-time algorithms for finding
medians and other order statistics.

Chapter 9 discusses the asymptotic analysis of recursive procedures,
including, of course, recurrence relations and techniques for solving them.

Chapter 10 outlines the important techniques for designing algorithms,
including divide-and-conquer, dynamic programming, local search algorithms,
and various forms of organized tree searching.

The last two chapters are devoted to external storage organization and
memory management. Chapter 11 covers external sorting and large-scale
storage organization, including B-trees and index structures.

Chapter 12 contains material on memory management, divided into four
subareas, depending on whether allocations involve fixed or varying sized
blocks, and whether the freeing of blocks takes place by explicit program
action or implicitly when garbage collection occurs.

Material from this book has been used by the authors in data structures
and algorithms courses at Columbia, Cornell, and Stanford, at both undergra-
duate and graduate levels. For example, a preliminary version of this book
was used at Stanford in a 10-week course on data structures, taught to a popu-
lation consisting primarily of Juniors through first-year graduate students.
The coverage was limited to Chapters 1-4, 9, 10, and 12, with parts of 5-7.

Exercises

A number of exercises of varying degrees of difficulty are found at the end of
each chapter. Many of these are fairly straightforward tests of the mastery of
the material of the chapter. Some exercises require more thought, and these
have been singly starred. Doubly starred exercises are harder still, and are
suitable for more advanced courses. The bibliographic notes at the end of
each chapter provide references for additional reading.

PREFACE vii

Acknowledgments

We wish to acknowledge Bell Laboratories for the use of its excellent
UNIX™ _based text preparation and data communication facilities that signifi-
cantly eased the preparation of a manuscript by geographically separated
authors. Many of our colleagues have read various portions of the manuscript
and have given us valuable comments and advice. In particular, we would
like to thank Ed Beckham, Jon Bentley, Kenneth Chu, Janet Coursey, Hank
Cox, Neil Immerman, Brian Kernighan, Steve Mahaney, Craig McMurray,
Alberto Mendelzon, Alistair Moffat, Jeff Naughton, Kerry Nemovicher, Paul
Niamkey, Yoshio Ohno, Rob Pike, Chris Rouen, Maurice Schlumberger,
Stanley Selkow, Chengya Shih, Bob Tarjan, W. Van Snyder, Peter Wein-
berger, and Anthony Yeracaris for helpful suggestions. Finally, we would
like to give our warmest thanks to Mrs. Claire Metzger for her expert assis-
tance in helping prepare the manuscript for typesetting.

A.V.A.
J.E.H.
J.D.U.

I NARIEE, 75 B SE BEPDFIG 17 1H) : www. ertongbook. com

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6

Chapter 3

3.1
3.2
3.3
3.4

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Contents

Design and Analysis of Algorithms

From Probléns 10 PrOBTATNS ounnemymrrssobsnsmmmnsss sewsssnsbswen s sesss 1
ADstract Data TYDPES s coievescossscvms sesnssunspseviss smenmes s 0 sesmss 10
Data Types, Data Structures, and Abstract Data Types............ 13
The Running Time of a Programocvvviiiieiiiiiiininiinen, 16
Calculating the Running Time of a Program.......................... 21
Good Programming PTACHICE .. cossssassssrsns sons somssumsonsssmmenens s 27
SUPET PASCAL.. ..o rmem i meisiishin stie s s abia Lo S5 5 50 HEH HOTR SRR TS 29
Basic Data Types

The Data TYPE “LiSE™ ..o e msins siimiisana s b sans s as i s o s 37
Implementation of Listsccooiiiiiiiiiiiiiiiiiiiian 40
SHACKS o susis soms eniem suww v sions Hass SUmw SRRUSERE ORI S50 588 BRSSO ol 53
OQUCTICS 5 vt s s s 0 T B0 S G 9 TS S8 S B AE S FS TS 56
MBPDINES s o incmmmmismonisn sinmsiemmmmasmsiniios fmih ¥ s Tt 52T R0 Sreem g 61
Stacks and Recursive Proceduresc.c.ooveviiiinieiiniinann. 64
Trees

Basic Terminologyccoueuiiiiiiiiiiiiii e 75
The ADT TREE v ivorsonsvs sosmmenssmesssmanmssosnumse soss s sasssns 82
Implementations Of TrEes :«: vz suescus vonsnsmsusenssvnsmmnpsassmenssessss 84
BINATY TTEES wuisovuomsassummssrvnsmnonss consminns S0 sahsesssssnminsiamssas 93

Basic Operations on Sets

INtrOdUCION 80 S8 uunuavs vasnsmusmmes v crmmmsmemms s s £ sy s 107
An ADT with Union, Intersection, and Difference................ 109
A Bit-Vector Implementation of Sets..............cccooeiiiiinann.. 112
A Linked-List Implementation of Setsc....ccoooiuinan.. 115
The DiCtionaryccvuiniiiniiiiit e e eeenes 117
Simple Dictionary Implementations.................ccooevvveeninn.n. 119
The Hasli Table Data SErUCtUTC «oviaussssssssssss sovs sins suwvsrsmasss 122
Estimating the Efficiency of Hash Functions........................ 129
Implementation of the Mapping ADT............ccovvivviiiinninnns 135
Priority QUEUESocnininiiiiii i 135
Implementations of Priority Queuescoceuvvevveeninennnn.. 138

Some Complex Set StruCtUrescooeiiirenierieiineinenesnssnes 145

Chapter 5

5.1
5.2
5:3
5.4
539
5.6

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 7

7.1
7.2
7.3
7.4
7.5

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Chapter 9

9.1
9.2
9.3
9.4

Chapter 10

10.1
10.2
10.3
10.4
10.5

CONTENTS

Advanced Set Representation Methods

Binary Search Treesccovvuviniiiiiiiiiiiiiiiieeiieeiieieaaannns 155
Time Analysis of Binary Search Tree Operations 160
DTN s 505 it rimisbemmmmscsmcm e S S R S i S N SR e A i 163
Balanced Tree Implementations of Sets.............ccocvvnvvninnnnes 169
Sets with the MERGE and FIND Operations....................... 180
An ADT with MERGE and SPLITccoiviiiiiiiniiannnes 189
Directed Graphs

Basic: DEfIRIIONE: sousnssusmssssmsssummmmsssnsssmommmssimsrsans vravuasss 198
Representations for Directed Graphs............ccccoovvvveiiniinnn. 199
The Single-Source Shortest Paths Problem 203
The All-Pairs Shortest Path Problemc.cccoviniinnene. 208
Traversals of Directed Graphsccovviiiiiiiniinininnnnnnn. 215
Directed Acyclic Graphs.............cooviiiiiiiiiiiiiiiiiieaee, 219
Strong CoOmMPONENntsccouiuiiiiiniiiiieiiieiiieieeeeeeeeaeneaes 222
Undirected Graphs

DEIINIRIONE cisccivmns s ois imes wss s vam S5 A A4 5 e B e R SR SRR 230
Minimum-Cost Spanning Treescccceviiiiiiinieininnnnnnnnn. 233
TraVErSAlS ...oueiiitiiiiiiit et 239
Articulation Points and Biconnected Components.................. 244
Graph Matchingoooiiiiiiiiiii e 246
Sorting

The Internal Sorting Model.............cccooviiiiiiiiiiiiiiiiiinnn., 253
Some Simple Sorting Schemes.............c.oovviciiiiiine, 254
1011114 <11) { S PP 260
HEAPSOTY s connsusmmsmnonsmsnsmassaomscisy sasb i (runsomy Sassvasenseeasmy s 271
Bin ISOTNE «ccoiniivns avmm vvmnsmmhs s ines 5o9s Svms 5 435 SFE6 45338 sk 155 274
A Lower Bound for Sorting by Comparisons........................ 282
Order StatisStiCs..........ooiuiiiiiiiiiiiiiiiiii i 286
Algorithm Analysis Techniques

Efficiency of Algorithmsccooeiiiiiiiiiiiiiiiiieee, 293
Analysis of Recursive Programs..............c.oooeviiiiiiiiiiiinn, 294
Solving Recurrence Equationsccoviiiniiiiiiieniiininn, 296
A General Solution for a Large Class of Recurrences 298

Algorithm Design Techniques

Divide-and-Conquer Algorithms..............ccooeuviiiiiiiiiiinnnnnn. 306
Dynamic PrOBIAMMINE ...ss 0 senssssvanssnmsonepsssssinsssassavassssn 311
Greedy Algofithms uvussommsnsssimasnsasvssisenssssmasessasassssamssons 321
Backtracking. .. s sssamsisninsss sussmnivssssassseasssssassimoss svarees 324

Local Search Algorithms.ccocessisisssvmsminesasisasasms ssapiss 336

CONTENTS

Chapter 11

11.1
11.2
11.3
11.4

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6

Xi

Data Structures and Algorithms for External Storage

A Model of External Computation.............cccooevuviiniiiiiinnnnn. 347
EXternal SOLNG «.icvisssmmmsmsonmsmsmn st ass coys s sssssvgss o 349
Storing Information in Filesc.uuwvsmmmenmnsnesismsssisesion 361
External Search. Trees . smumsssssmssmsmssasissnimssss syt eavs 368

Memory Management

The Issues in Memory Management...............cccvevevninennenenn. 378
Managing Equal-Sized Blocks............coovvviiiiiiiiiiiiiiiiinnn. 382
Garbage Collection Algorithms for Equal-Sized Blocks 384
Storage Allocation for Objects with Mixed Sizes 392
BUddy SYSIOIME ..ccssuommmsmmeumsmnsmssassssmmssmesmsesssmsmssessmms sess i 400
Storage ComPACIONs::mmsaemimssssisasssmsss e siss s smwsis 404
BIBHOBEAPRY :.soicomnsnpmmpnens nove soes dss 4535 Somprsgs desmams MEes GaoR oS 411

CHAPTER 1

Design and
Analysis of
Algorithms

There are many steps involved in writing a computer program to solve a given
problem. The steps go from problem formulation and specification, to design
of the solution, to implementation, testing and documentation, and finally to
evaluation of the solution. This chapter outlines our approach to these steps.
Subsequent chapters discuss the algorithms and data structures that are the
building blocks of most computer programs.

1.1 From Problems to Programs

Half the battle is knowing what problem to solve. When initially approached,
most problems have no simple, precise specification. In fact, certain prob-
lems, such as creating a ‘‘gourmet’’ recipe or preserving world peace, may be
impossible to formulate in terms that admit of a computer solution. Even if
we suspect our problem can be solved on a computer, there is usually consid-
erable latitude in several problem parameters. Often it is only by experimen-
tation that reasonable values for these parameters can be found.

If certain aspects of a problem can be expressed in terms of a formal
model, it is usually beneficial to do so, for once a problem is formalized, we
can look for solutions in terms of a precise model and determine whether a
program already exists to solve that problem. Even if there is no existing pro-
gram, at least we can discover what is known about this model and use the
properties of the model to help construct a good solution.

Almost any branch of mathematics or science can be called into service to
help model some problem domain. Problems essentially numerical in nature
can be modeled by such common mathematical concepts as simultaneous linear
equations (e.g., finding currents in electrical circuits, or finding stresses in
frames made of connected beams) or differential equations (e.g., predicting
population growth or the rate at which chemicals will react). Symbol and text
processing problems can be modeled by character strings and formal gram-
mars. Problems of this nature include compilation (the translation of pro-
grams written in a programming language into machine language) and infor-
mation retrieval tasks such as recognizing particular words in lists of titles
owned by a library.

2 DESIGN AND ANALYSIS OF ALGORITHMS

Algorithms

Once we have a suitable mathematical model for our problem, we can attempt
to find a solution in terms of that model. Our initial goal is to find a solution
in the form of an algorithm, which is a finite sequence of instructions, each of
which has a clear meaning and can be performed with a finite amount of
effort in a finite length of time. An integer assignment statement such as
x :=y + z is an example of an instruction that can be executed in a finite
amount of effort. In an algorithm instructions can be executed any number of
times, provided the instructions themselves indicate the repetition. However,
we require that, no matter what the input values may be, an algorithm ter-
minate after executing a finite number of instructions. Thus, a program is an
algorithm as long as it never enters an infinite loop on any input.

There is one aspect of this definition of an algorithm that needs some clar-
ification. We said each instruction of an algorithm must have a ‘“‘clear mean-
ing” and must be executable with a “finite amount of effort.” Now what is
clear to one person may not be clear to another, and it is often difficult to
prove rigorously that an instruction can be carried out in a finite amount of
time. It is often difficult as well to prove that on any input, a sequence of
instructions terminates, even if we understand clearly what each instruction
means. By argument and counterargument, however, agreement can usually
be reached as to whether a sequence of instructions constitutes an algorithm.
The burden of proof lies with the person claiming to have an algorithm. In
Section 1.5 we discuss how to estimate the running time of common program-
ming language constructs that can be shown to require a finite amount of time
for their execution.

In addition to using Pascal programs as algorithms, we shall often present
algorithms using a pseudo-language that is a combination of the constructs of a
programming language together with informal English statements. We shall
use Pascal as the programming language, but almost any common program-
ming language could be used in place of Pascal for the algorithms we shall dis-
cuss. The following example illustrates many of the steps in our approach to
writing a computer program.

Example 1.1. A mathematical model can be used to help design a traffic light
for a complicated intersection of roads. To construct the pattern of lights, we
shall create a program that takes as input a set of permitted turns at an inter-
section (continuing straight on a road is a ‘“‘turn’’) and partitions this set into
as few groups as possible such that all turns in a group are simultaneously per-
missible without collisions. We shall then associate a phase of the traffic light
with each group in the partition. By finding a partition with the smallest
number of groups, we can construct a traffic light with the smallest number of
phases.

For example, the intersection shown in Fig. 1.1 occurs by a watering hole
called JoJo’s near Princeton University, and it has been known to cause some
navigational difficulty, especially on the return trip. Roads C and E are one-
way, the others two way. There are 13 turns one might make at this

