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Preface

This book grew out of lectures on Riemann surfaces which the author gave
at the universities of Munich, Regensburg and Miinster. Its aim is to give
an introduction to this rich and beautiful subject, while presenting methods
from the theory of complex manifolds which, in the special case of one
complex variable, turn out to be particularly elementary and transparent.

The book is divided into three chapters. In the first chapter we consider
Riemann surfaces as covering spaces and develop a few basics from topology
which are needed for this. Then we construct the Riemann surfaces which
arise via analytic continuation of function germs. In particular this includes
the Riemann surfaces of algebraic functions. As well we look more closely at
analytic functions which display a special multi-valued behavior. Examples
of this are the primitives of holomorphic 1-forms and the solutions of linear
differential equations.

The second chapter is devoted to compact Riemann surfaces. The main
classical results, like the Riemann-Roch Theorem, Abel’s Theorem and the
Jacobi inversion problem, are presented. Sheaf cohomology is an important
technical tool. But only the first cohomology groups are used and these are
comparatively easy to handle. The main theorems are all derived, following
Serre, from the finite dimensionality of the first cohomology group with
coefficients in the sheaf of holomorphic functions. And the proof of this is
based on the fact that one can locally solve inhomogeneous Cauchy-
Riemann equations and on Schwarz” Lemma.

In the third chapter we prove tite Riemann Mapping Theorem for simply
connected Riemann surfaces (or Uniformization Theorem) as well as the
main theorems of Behnke-Stein for non-compact Riemann surfaces, i.e., the
Runge Approximation Theorem and the Theorems of Mittag-Leffler and
Weierstrass. This is done using Perron’s solution of the Dirichlet problem

vii



viil Preface

and Malgrange’s method of proof, based on Weyl's Lemma, of the Runge
Approximation Theorem. In this chapter we also complete the discussion of
Stein’s Theorem, begun in Chapter 1, concerning the existence of holomor-
phic functions with prescribed summands of automorphy and present
Rohr!'s solution of the Riemann-Hilbert problem on non-compact Riemann
surfaces.

We have tried to keep the prerequisites to a bare minimum and to
develop the necessary tools as we go along. However the reader is assumed
to be familiar with what would generally be covered in one semester courses
on one complex variable, on general topology and on algebra. Besides these
basics, a few -facts from differential topology and functional analysis have
been used in Chapters 2 and 3 and these are gathered together in the
appendix. Lebesgue integration is not needed, as only holomorphic or differ-
entiable functions (resp. differential forms) are integrated. We have also
avoided using, without proof, any theorems on the topology of surfaces.

The material presented corresponds roughly to three semesters of lec-
tures. However, Chapters 2 and 3 presuppose only parts of the preceding
chapters. Thus, after §§1, 6 and 9 (the definitions of Riemann surfaces,
sheaves and differential forms) the reader could go directly to Chapter 2.
And from here, only §§12-14 are needed in Chapter 3 to be able to handle
the main theorems on non-compact Riemann surfaces.

The English edition includes exercises which have been added at the end
of every section and some additional paragraphs in §§8, 17 and 29. As well,
the terminology concerning coverings has been changed. Thanks are due to
the many attentive readers of the German edition who helped to eliminate
several errors; in particular to G. Elencwajg, who also proposed some of
the exercises. Last but not least we would like to thank the translator,
B. Gilligan, for his dedicated efforts.

Miinster O. FORSTER
May, 1981
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CHAPTER 1
Covering Spaces

Riemann surfaces originated in complex analysis as a means of dealing with
the problem of multi-valued functions. Such multi-valued functions occur
because the analytic continuation of a given holomorphic function element
along different paths leads in general to different branches of that function. It
was the idea of Riemann to replace the domain of the function with a many
sheeted covering of the complex plane. If the covering is constructed so that
it has as many points lying over any given point in the plane as there are
function elements at that point, then on this “covering surface ” the analytic
function becomes single-valued. Now, forgetting the fact that these surfaces
are “spread out” over the complex plane (or the Riemann sphere), we get
the notion of an abstract Riemann surface and these may be considered as
the natural domain of definition of analytic functions in one complex
variable.

We begin this chapter by discussing the general notion of a Riemann
surface. Next we consider covering spaces, both from the topological and
analytic points of view. Finally, the theory of covering spaces is applied to
the problem of analytic continuation, to the construction of Riemann sur-
faces of algebraic functions, to the integration of differential forms and to
finding the solutions of linear differential equations.

§1. The Definition of Riemann Surfaces

In this section we define Riemann surfaces, holomorphic and meromorphic
functions on them and also holomorphic maps between Riemann surfaces.

Riemann surfaces are two-dimensional manifolds together with an addi-
tional structure which we are about to define. As is well known, an
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2 : 1 Covering Spaces

n-dimensional manifold is a Hausdorff topological space X such that every
point a € X has an open neighborhood which is homeomorphic to an open
subset of R".

1.1. Definition. Let X be a two-dimensional manifold. A complex chart on X
is a homeomorphism ¢: U — V of an open subset U < X onto an open
subset V' < C. Two complex charts ¢;: U; - V;, i = 1, 2 are said to be holo-
morphically compatible if the map

@22 01" @0(Uy 0 Uy) = 9y(Uy 0 U,)

is biholomorphic (see Fig. 1).

Figure 1

A complex atlas on X is a system 2 = {¢;: U; — V;, i € I} of charts which
are holomorphically compatible and which cover X, i.e., Uis (Ui=X.

Two complex atlases 2 and 2" on X are called analytically equivalent if
every chart of 21 is holomorphically compatible with every chart of 2.

1.2. Remarks
(a) If o: U > V is a complex chart, U, is open in U and V; := ¢(U,), then
@ |U, — V; is a chart which is holomorphically compatible with ¢: U — V.
(b) Since the composition of biholomorphic mappings is again biholo-
morphic, one easily sees that the notion of analytic equivalence of complex
atlases is an equivalence relation.

1.3. Definition. By a complex structure on a two-dimensional manifold X we
mean an equivalence class of analytically equivalent atlases on X.

Thus a complex structure on X can be given by the choice of a complex
atlas. Every complex structure £ on X contains a unique maximal atlas 2*.
If 21 is an arbitrary atlas in X, then 2[* consists of all complex charts on X
which are holomorphically compatible with every chart of 21.



| The Definition @f Riemann Surfaces 3

1.4. Definition. A Riemann surface is a pair (X, ), where X is a connected
two-dimensional manifold and Z is a complex structure on X.

One usually writes X instead of (X, £) whenever it is clear which complex
structure X is meant. Sometimes one also writes (X, 2) where 2 is a re-
presentative of Z.

Convention. If X is a Riemann surface, then by a chart on X we always
mean a complex chart belonging to the maximal atlas of the complex struc-
ture on X.

Remark. Locally a Riemann surface X is nothing but an open set in the
complex plane. For, if ¢: U— V < C is a chart on X, then ¢ maps the open
set U = X bijectively onto V. However, any given point of X is contained in
many different charts and no one of these is distinguished from the others.
For this reason we may only carry over to Riemann surfaces those notions
from complex analysis in the plane which remain invariant under biholo-
morphic mappings, i.e., those notions which do not depend on the choice of
a particular chart.

1.5. Examples of Riemann Surfaces

(@) The Complex Plane C. Its complex structure is defined by the atlas
whose only chart is the identity map C — C.

(b) Domains. Suppose X is a Riemann surface and Y < X is a domain,
1.e., a connected open subset. Then Y has a natural complex structure which
makes it a Riemann surface. Namely, one takes as its atlas all those complex
charts ¢: U — V on X, where U < Y. In particular, every domain Y =« Cisa
Riemann surface.

(c) The Riemann sphere P'. Let P' :=C U {oo}, where oo is a symbol not
contained in C. Introduce the following topology on P!. The open sets are
the usual open sets U = C together with sets of the form V U {00}, where
V < C is the complement of a compact set K < C. With this topology P! is a
compact Hausdorff topological space, homeomorphic to the 2-sphere S2. Set

U,=P!\{oo}=C
U, =P"\{0} =C* U {o}.
Define maps ¢;: U; - C, i = 1, 2, as follows. ¢, is the identity map and

_Jl/z forzeC*

¢a(2): 0 forz= 0.

Clearly these maps are homeomorphisms and thus P! is a two-dimensional
manifold. Since U, and U, are connected and have non-empty intersection,
P! is also connected.



4 . 1 Covering Spaces

The complex structure on P! is now defined by the atlas consisting of the
charts ¢;: U;—C, i = 1, 2. We must show that the two charts are holo-
morphically compatible. But ¢,(U; n U;) = ¢,(U, n U,)=C* and

@2 @1 'iC*—C*, z 1)z,
is biholomorphic.

Remark. The notation P! comes from the fact that one may consider P*
as the 1-dimensional projective space over ‘the field of complex numbers.

(d) Tori. Suppose w,, w, € C are linearly independent over R. Define'
- T=2w, + Zw, = {nw, + mw,: n, me Z}.

[ is called the lattice spanned by w, and w, (Fig. 2). Two complex numbers
z, ' € C are called equivalent mod I' if z — z’ € I'. The set of all equivalence
classes is denoted by C/I'. Let n: C — C/F be the canonical projection, i.e.,
the map which associates to each point z € C its equivalence class mod I.

Figure 2

Introduce the following topology (the quotient topology) on C/T. A
subset U = C/T" is open precisely if z~'(U) c C is open. With this topology
C/T" is a Hausdorfl topological space and the quotient map n: C — C/T is
continuous. Since C is connected, C/T" is also connected. As well C/I is
compact, for it is covered by the image under mn of the compact
parallelogram

P:={w, + pw,: 4, pe [0, 1]}

The map = is open, i.e., the image of every open set V < C is open. To see this
one has to show that V:=n"!(n(V)) is open. But

V= U(w+ V).

wel

Since every set w + V is open, so is V.
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The complex structure on C/T" is defined in the following way. Let V < C
be an open set such that no two points in V are equivalent under I'. Then
U :=n(V)is open and n|V — U is a homeomorphism. Its inverse ¢: U — V
is a complex chart on C/I'. Let ¥ be the set of all charts obtained in this
fashion. We have to show that any two charts ¢;: U; - V;, i =1, 2, belong-
ing to ¥ are holomorphically compatible. Consider the map

V=0, - ‘Pl_11 ¢(Uy n Uy)—=u(Uyp n U,y).

For every ze ¢,(U, n U,) one has n(y(z)) = ¢; '(z) =n(z) and thus
Y(z) —zeTI. Since I is discrete and i is continuous, this implies that
(z) — = is constant on every connected component of ¢ (U, n U,). Thus
is holomorphic. Similarly ™! is also holomorphic.

Now let C/T" have the complex structure defined by the complex atlas V1.

Remark. Let S' ={z € C: |z| = 1} be the unit circle. The map which
associates to the point of C/I" represented by iw, + uw,, (4, u € R), the
point

(e2m'l’ elniu)e Sl x Sl’

is a homeomorphism of C/I" onto the torus S' x S'.

1.6. Definition. Let X be a Riemann surface and Y < X an open subset. A
function f: Y — C is called holomorphic, if for every charty: U —» V on X the
function

Sy (U Y)»C

is holomorphic in the usual sense on the open set (U n Y) < C. The set of
all functions holomorphic on Y will be denoted by ¢(Y).

1.7. Remarks

(a) The sum and product of holomorphic functions are again holomor-
phic. Also constant functions are holomorphic. Thus ¢/(Y) is a C-algebra.

(b) Of course the condition in the definition does not have to be verified
for all charts in a maximal atlas on X, just for any family of charts covering
Y. Then it is automatically fulfilled for all other charts.

(c) Every chart y: U — V on X is, in particular, a complex-valued func-
tion on U. Trivially it is holomorphic. One also calls ¢ a local coordinate or
a uniformizing parameter and (U, /) a coordinate neighborhood of any point
a € U. In this context one generally uses the letter z instead of .

1.8. Theorem (Riemann’s Removable Singularities Theorem). Let U be an
open subset of a Riemann surface and let a e U. Suppose the function
S € €(U\{a}) is bounded in some neighborhood of a. Then f can be extended
uniquely to a function fe € (U).



6 _ 1 Covering Spaces

This follows directly from Riemann’s Removable Singularities Theorem
in the complex plane.
We now define holomorphic mappings between Riemann surfaces.

1.9. Definition. Suppose X and Y are Riemann surfaces. A continuous map-
ping [: X — Y is called holomorphic, if for every pair of charts ,: U, - V,
on X and ¢,: U, —» V; on Y with f{U,) = U,, the mapping

Wy f ‘f/f13V1—’Vz

is holomorphic in the usual sense.

A mapping [ X - Y is called biholomorphic if it is bijective and both
f:X > Yandf': Y- X are holomorphic. Two Riemann surfaces X and
Y are called isomorphic if there exists a biholomorphic mapping f: X — Y.

1.10. Remarks

(a) In the special case Y = C, holomorphic mappings f: X — C are
clearly the same as holomorphic functions.

(b) If X, Y and Z are Riemann surfaces and /: X - Yand g: Y — Z are
holomorphic mappings, then the composition g f: X —Z is also
holomorphic.

(c) A continuous mapping f: X — Y between two Riemann surfaces is
holomorphic precisely if for every open set V' = Y and every holomorphic
function € ( (V), the “ pull-back " function - f: f ~*(V) — C is contained
in ¢ (f~'(V)). This follows directly from the definitions and the remarks
(1.7.c) and (1.10.b).

In this way a holomorphic mapping f: X — Y induces a mapping

SRV =), )=y S

One can easily check that f*is a ring homomorphism. If g: Y — Z is another
holomorphic mapping, W is open in Z, V=g~ (W) and U :=f~'(V), then
(g < f)*: ¢(W)— €(U)is the composition of the mappings g*: ( (W) — ¢ (V)
and f*: ((V)-> ((U),ie, (g - f)*=[f*-g*

1.11. Theorem (Identity Theorem). Suppose X and Y are Riemann surfaces
and fy, f>: X = Y are two holomorphic mappings which coincide on a set
A < X having a limit point a € X. Then f, and f, are identically equal.

PRrOOF. Let G be the set of all points x € X having an open neighborhood W
such that f, | W = f, | W. By definition G is open. We claim that G is also
closed. For, suppose b is a boundary point of G. Then f,(b) = f,(b) since f,
and f; are continuous. Choose charts ¢: U - Von X andy: U - V' on Y
with b € U and f;(U) = U'. We may also assume that U is connected. The
mappings

g=y fi ¢ :V->V<cC
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are holomorphic. Since U n G # (, the Identity Theorem for holomorphic
functions on domains in C implies g, and g, are identically equal. Thus
f1|U =/|U. Hence b € G and thus G is closed. Now since X is connected
either G = & or G = X. But the first case is excluded since a € G (using the
Identity Theorem in the plane again). Hence f; and f, coincide on all of X.

a

1.12. Definition. Let X be a Riemann surface and Y be an open subset of X.
By a meromorphic function on Y we mean a holomorphic function f: Y' — C,
where Y' = Y is an open subset, such that the following hold:

(i) Y\Y’ contains only isolated points.
(ii) For every point p € Y\Y" one has
lim| fix)| = oo.
x=p
The points of Y\Y" are called the poles of f. The set of all meromorphic
functions on Y is denoted by .#(Y).

1.13. Remarks
(a) Let (U, z) be a coordinate neighborhood of a pole p of fwith z(p) = 0.
Then f may be expanded in a Laurent series

in a neighborhood of p.

(b) .#(Y) has the natural structure of a C-algebra. First of all the sum
and the product of two meromorphic functions f, g € .#(Y) are holomorphic
functions at those points where both fand g are holomorphic. Then one
holomorphically extends, using Riemann’s Removable Singularities
Theorem, [+ g (resp. fg) across any singularities which are removable.

1.14. Example. Suppose n > 1 and let
F)=z"4+c,2" '+ +c,. ¢ €C,

be a polynomial. Then F defines a holomorphic mapping F: C — C. If one
thinks of C as a subset of P!, then lim..,|F(z)| = oo. Thus F € .#(P!).

We now interpret meromorphic functions as holomorphic mappings into
the Riemann sphere.

1.15. Theorem. Suppose X is a Riemann surface and f € .# (X). For each pole
p of f, define f(p) := co. Then f- X — P is a holomorphic mapping. Conversely,
if /2 X - P'is a holomorphic mapping, thenfis either identically equal to co or
else f ' (c0) consists of isolated points and f: X\ f ~*(c0) — C is a meromorphic
function on X.
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From now on we will identify a meromorphic function f € .#(X ) with the
corresponding holomorphic mapping f: X — P!,

PROOF
(a) Let fe .#(X) and let P be the set of poles of f. Then f induces a
mapping f: X —» P! which is clearly continuous. Suppose ¢: U — V and
Y: U — V' are charts on X and P! resp. with f{U) = U'. We have to show
that
g=v f- @ VSV

is holomorphic. Since fis holomorphic on X'\P, it follows that g is holomor-
phic on V\@(P). Hence by Riemann’s Removable Singularities Theorem, g is
holomorphic on all of V.

(b) The converse follows from the Identity Theorem (1.11). O

1.16. Remark. From (1.11) and (1.15) it follows that the Identity Theorem
also holds for meromorphic functions on a Riemann surface. Thus any
function f € .#(X) which is not identically zero has only isolated zeros. This
implies that .#(X) is a field.

EXERCISES (§1)

1.1. (a) One point compactification of R". For n > 1 let co be a symbol not belonging
to R". Introduce the following topology on the set X :==R" U {o0]. A set
U < X is open, by definition, if one of the following two conditions is
satisfied:

(i) oo ¢ U and U is open in R” with respect to the usual topology on R".
(i1) 0 e Uand K = X\U is compact in R" with respect to the usual topology
on R".

Show that X is a compact Hausdorff topological space.
(b) Stereographic projection. Consider the unit n-sphere

S"={(xy, .eer Xps1) ER"™ i x]+ -+ x2 = 1)
and the stereographic projection
g: 8" > R" U {0}
given by

1

?x“—l(x,. seely x,,) ifX,,+1 # 1

a(xyy ooy Xpeq) =

0, if Xp+1 = 1.
Show that ¢ is a homeomorphism of S” onto X.

1.2. Suppose

(j Z) e GL(2, C).



