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Preface

Throughout the history of civilization, mathematics has served as one of the major
tools to analyze real world applications. In turn, through these applications it has
been developed and expanded considerably. Moreover, mathematics helps estab-
lishing and consolidating the belief in eternal and exact truth, and hence the trust
on sciences.

Since the invention of Calculus by Newton and Leibniz in the seventeenth
century, mathematics has been overwhelmingly successful in almost every branch
of sciences. It is instrumental for scientists and engineers to think, to work and to
communicate.

We recall that Calculus is built fundamentally upon the definition of the
real numbers. This definition naturally leads to the notion of limit. Two special
and most useful limits are the derivative and the integral of a function. Most
physical theories are described in terms of differential equations. Modern physics
essentially started from Newton’s theory of motions, and Newton’s second law is
a paradigm. The electro-magnetic theory is essentially the studies on the Maxwell
equations. The theory of general relativity explores the Einstein equation, and
the quantum mechanics uses the Schrédinger equation or the Wigner equation.
We discuss the Lagrangian or Hamiltonian systems in mechanics, the biharmonic
equation in elasticity, and the Navier-Stokes equations in fluid, etc.

The invention of electronic computers changed fundamentally the way for
scientific research. Though we may not obtain analytical solution to a complex
system in general, computer allows us to find the solution to a set of continuous
differential equations in a discrete manner. Under certain circumstances, we even
do not need to go to the continuous form. For instance, a fully discrete binomial
algorithm may be used to compute the price of an option. We point out that

instead of becoming a substitute for the continuous analysis, scientific computing
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reaches its best efficiency in real world applications only when we have a good
understanding of the physics, the continuous modeling and analysis, the numerical
algorithm, and the computer code.

This book is an outcome of an advanced course, conducted in English, for
graduate students and senior undergraduate students at Department of Mechanics
of Peking University. This course has been offered roughly every other year since
1998. We set forth the following objectives.

e To show some modern (1900-1990?) mathematical methods that are widely
used in engineering sciences, nonlinear mechanics and other physical sciences.

e To help initiating research activities, namely, to boost ideas, to formulate the
problem, and to explore the mathematics. '

e To help bridging the gap between the mathematical tools and the physical
understandings taught in other undergraduate courses.

A major ingredient of this course is nonlinearity. As is well known, superpo-
sition is the feature that distinguishes linear and nonlinear systems.

In linear algebra, we have
Azi =y, Azz=y2 = A(z1+%2) =91+

The differential operator and integral operator are also linear.

= (@f(2) + fo(x)) = a3l + 532

/ (af(z) + Bg(x)) dz = o / f(z)dz + B / o(z)dz

Similarly, the Fourier transform and the Laplace transform are linear operators.
Superposition also applies to linear differential equations. For example, if both
z1(t) and x2(t) are solutions to the equation az” +bz'+cz = 0, so is az; (t) + Bza(t)
for any constant a and 3. As a matter of fact, the general solution is z(t) = Ce*t+
Cye*?t where \; and )\ are the roots to the quadratic equation aA? +bA\+c=0.

For instance, we consider the following RCL circuit in Fig. 1. A resistor obeys

Ohm’s law Vg = RI, while an inductor and a capacitor satisfy V;, = L% and I =
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dV
Cd—tc, respectively. Kirchhoff’s law gives rise to an integral-differential equation.

V= RI+L— c/ (s)ds + Ve (0).

We differentiate it once to obtain
d?I dI
FTl + R— T + C,I 0.
If V varies along with time, the righthand side does not vanish. This circuit may

generate electro-magnetic waves of a certain frequency.

MV
R

® 3

C
|
I

Figure 1 RCL circuit.

As Einstein pointed out, the Laws of Nature cannot be linear. Linear system
is usually a special case or a simplified version, therefore incomplete. Lots of im-
portant features of the geal world can only be explained under the framework of
nonlinear systems. Besides, linear problems are relatively simple, and mathemati-
cal tools we have learned before are fairly competent to handle them. We head for
challenges and excitements through studies of nonlinear problems.

For an example of nonlinear system, we consider an oversimplified mechanical
system consisted of the sun with mass M and the earth with mass m in Fig. 2.
Let their positions be y and zx, respectively. Newton’s second law and the universal
gravitation theory lead to the following coupled system,

md_zx_ _ GmM
de2 = jo -y’
d’y  GmM

= e
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Figure 2 A one-dimensional two-body system of the sun and the earth.

For another example, the Navier-Stokes equations for an incompressible fluid

are as follows. Let v be the velocity, p the pressure, and Re the Reynolds number,

V.v=0,
1 1
—V3v. -
Re M
In this course, we shall mainly discuss the following topics.

vi+ (VV)-v+Vp=

In Chapter 1, we expose the qualitative theory for ODE systems (4 weeks of
teaching). We start with some basic notions. Then we present a basic fixed point
theory from functional analysis. This allows us to establish existence results for an
ODE system. A further application is also illustrated, namely, iteration methods
for solving a linear algebraic system. To understand qualitatively an ODE system,
we analyze its critical points. For a second order ODE, the so-called plane analysis
may provide substantial understanding. For a general system, there are not as many
powerful tools. Stability analysis via the Lyapunov function is an exception. When
there is a controlling parameter in a system, bifurcation may occur. We conclude
this chapter by an exhibition of chaos in the Lorenz system and the logistic map.

For partial differential equations, we first study reaction-diffusion systems (3
weeks of teaching). We set up BVP (boundary-value problem) and IBVP (initial-
boundary-value problem), and then show a simple example of instability at equi-
librium. For a linearized problem, its dispersion relation gives a primary linear
stability result. For nonlinear systems, an invariant domain approach sometimes
works. This is a geometrical way to get a priori estimate. For a special exam-
ple of nonlinear system, we illustrate a perturbation method for its steady states.
Next, traveling wave analysis reduces a PDE system to an ODE system, and usu-
ally provides explanation to some wave behaviours of the PDE system. Only for

very exceptional cases, a nonlinear PDE may be transformed to a linear one, e.g..
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Burgers’ equation by the Cole-Hopf transform. We further illustrate a combina-
tion of theoretical and numerical investigations in an example of reaction-diffusion
equation, namely, the evolutionary Duffing equation.

In Chapter 3, we discuss elliptic equations (2 weeks of teaching). the main
topic is to introduce some basic ideas in the modern theories of partial differential
equations. We start with generalized functions and weak derivatives, and introduce
briefly the Sobolev spaces, and state the embedding theorem. Weak formulations
and minimization procedure are used to establish existence results.

Chapter 4 is devoted to hyperbolic conservation laws (5 weeks of teaching).
The most distinct feature of this type of PDE’s lies in the inevitable appearance
of discontinuities, regardless of smooth initial data. We show shock formation in
inviscid Burgers’ equation, by a characteristics approach. Then taking the Euler
equations for polytropic gas as an example, we discuss the elementary waves, which
include shock waves via vanishing viscosity approach, and rarefaction waves via self-
similarity solution approach. For a general Riemann problem of gas dynamics, the
unique composition of these elementary waves gives the solution, which is a weak
one by construction. We further discuss solitons in the KdV equation, for which a
brilliant theory of inverse scattering transform is sketched.

As this book is only an introduction of qualitative theories for ODE and PDE
systems, further readings are suggested.

1. Smoller J. Shock Waves and Reaction-diffusion Equations. Springer, 1999.

2. Grindrod P. Patterns and Waves. Claredon, 1991.

3. Whitham G B. Linear and Nonlinear Waves. John Wiley & Sons, 1974.

4. Wang L, Wang M Q. Qualitative Analysis for Nonlinear Ordinary Differential

Equations (in Chinese). Harbin Institute of Technology Press, 1987.

5. Huang Y N. Lecture Notes on Nonlinear Dynamics (in Chinese). Peking Uni-

versity Press, 2010.

6. Ding T R, Li C Z. A Course on Ordinary Differential Equations (in Chinese).

Higher Education Press, 2004.

7. Ye Q X, Li Z Y. Introduction to Reaction-Diffusion Equations (in Chinese).

Science Press, 1994.

8. Braess D. Finite Elements. Cambridge University Press, 2001.
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Chapter 1 Qualitative Theory for ODE Systems

1.1 Basic notions

For many applications, we describe a system using only one independent variable.
A dependent quantity is expressed as a function of this independent variable. An
ordinary differential equation (ODE) is an equation that contains an unknown
function, called a state variable, together with its derivatives with respect to the
single independent variable. For historical reasons, the independent variable is typ-
ically denoted as t, representing time. Depending on the applications, actually ¢
may mean some other quantities, such as temperature, height, etc. The order of
the highest derivative in an ODE is its order.

An ODE system, also called a dynamical system, is a set of ODE’s. Typically
each equation in this system is of first order. The order of the ODE system is the
number of first order equations in the system.

A high-order ODE can always be recast to an ODE system of the same order.

For instance,

2tz +z(1—z)+ f(t) =0 (1.1)
can be rewritten as -
{‘T i (1.2)
Y = —[zy +z(1 —z) + f(t)]

Therefore, a general ODE system reads
¢’ = f(t,z), with == (z1, - ,zn)T €R". (1.3)

The ODE system is autonomous if the righthand side depends only on the
state variable, that is, f(z,t) = f(z). A non-autonomous system can be trivially

reshaped to an autonomous one. In fact, if we take y = (¢,z1,- - ,Tn)T, then we

1
' _ 14
Y (f(y)> w

obtain
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Through this procedure, the order of the system rises by one.

In this course, we are not concerned with a particular solution to an ODE
system. Instead, we take a global view of all the solutions to a system, and for
the aforementioned reason, an autonomous ODE system. These solutions form a
family of (vector) functions. This family is the object for the qualitative theory.

If one such function z(t) satisfies z(tg) = zo for a certain time ¢y, then we call
it an orbit, or a trajectory passing through the point (¢g, o). These names reflect
that we take a geometrical view. Sometimes we use the notation z = ¢(t; ¢, o) to
identify the orbit. In contrast, in the previous ODE course, one regards (to, zo) as
an initial point, and usually considers the solution = z(t) only for ¢ > to. The
geometrical name for this part of the solution is the positivé semi-orbit, denoted by
x = ¢*(t;to, To). Meanwhile, the solution for ¢ € (—oo,tg] is called as the negative
semi-orbit, and denoted as x = ¢~ (¢;t9,Zo). Under such a geometrical view, we
regard the function z(t) equivalent to a curve in the space R™. This space is called
a phase space, or a phase plane if n = 2.

We remark that sometimes one also specifies boundary data, namely n algebraic
equations for n quantities selected from z1(a),- - ,zn(a),z1(b),-- ,zn(b), when
one looks for a solution in ¢ € [a, b].

For an autonomous system, a translation in time is invariant. More precisely, if
x = ¢(t; 0, zo) solves the system with initial data z(0) = zo, then z = @(t+1o; o, o)
solves the system with initial data z(tg) = zo. Therefore, it suffices to study the
problem with initial data at one selected time, which is usually chosen as ¢y = 0.

We recall that the existence, uniqueness and continuous dependency hold for
quite general cases, e.g., when the source term (righthand side) is continuous.
Existence will be discussed later by means of a fixed point theory.

Qualitative theory is concerned with the global structure of trajectories in the
phase space, instead of a particular solution for certain given initial data.

At each given point z, the source term introduces a vector f(z) in the phase
space. The direction of this vector determines the direction of the trajectory, and
the absolute value determines how fast a solution takes to go through this point.
We may imagine that there is a particle moving along the trajectory according to
the vector field (velocity field). See Fig. 1.1.
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Figure 1.1 Trajectories, vector field and phase space (plane).

We notice that at a point  where f(z) vanishes, the previous statement be-
comes meaningless. This leads to the notion of a critical point (equilibrium point,
singular point, stationary point, etc.), which turns out to be crucial in later dis-
cussions.

A point z is a critical point where f(z) = 0. It is a regular point if f is finite and
non-zero. Two trajectories may intersect only at a critical point in the phase space.
This can be proved by the uniqueness of solution to the following ODE system in
the neighborhood of a regular point z*. Assuming that f;(z) # 0, we have

dzz _ fa(z) dzn _ fn(z)

El_ = m’ ’&T = m’ (z2(21), - s zn(2]) = (23, ,27)).  (1.5)

Furthermore, a traj’ectory usually starts from/ends at a critical point or infinity,
or forms a closed orbit. Under certain circumstances, a chaotic orbit may appear.
In the subsequent sections, we shall discuss the local existence for ODE systems,
using a fixed point theory. Then we shall perform detailed analysis in the vicinity

of a critical point.

1.2 Local existence

The local existence for an ODE system may be proven through a Picard iteration
procedure. We present here a systematic approach, using a fixed point theory from

functional analysis.



