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Preface

Electronics and information systems play an ever-increasing role in
the worldwide economy. With a global income of $265 billion in
2008, the semiconductor industry contributed to more than $1,300
billion in the electronics industry and $5,000 billion in services, which
represented nearly 10% of the gross domestic product. Electronics and
information systems have penetrated and transformed all aspects of
life, including transportation, communications, health and well being,
government services, banking systems, entertainment and education.

Micro- and nanoelectronics are the key enabling technologies for
electronics, information and communications technology, and as a
result, the semiconductor market is increasing at double the rate of
gross domestic product growth. The specific position of the
microelectronics industry has been made possible by the constant
downscaling of device dimensions, which increases the performance
to fulfill the current societal needs in consumer electronics that can
now be divided into two main paths: performance improvement and
energy efficiency. For this, during the last 50 years, integrated circuits
have evolved from a 100-transistors chip in 1966 to multibillion-
transistors circuits in 2010, with the smallest device measuring less
than 20 nm.

However, the problem with the constant downscaling in dimension
is that the resistive—capacitive (RC) delay coming from interconnects
has become the main issue for devices with high performance. That is



xiv  Plasma Etching Processes for Interconnect Realization in VLSI

why copper-based interconnects have been introduced at the end of the
1990s to reduce the resistivity of wires, and low dielectric constant
materials (low-k dielectrics) were introduced to deal with interconnects
capacitance and signal propagation delay. But these changes have not
been done without some difficulty.

Indeed, for the last 10 years, low-k dielectrics (i.e. materials with a
lower dielectric constant than silicon dioxide) have evolved from
fluorine-doped silicon glass (FSG: & = 3.2), to organosilicate (SIOCH;
k = 3.0 and 2.7) and porous SiOCH (k = 2.55 and 2.4). Further
decreasing the dielectric constant requires us to increase the porosity.
Unfortunately, the presence of interconnected pores has amplified the
dielectric sensitivity to plasma-based processes that are required for
interconnects fabrication. It is thus impossible to define patterns in
porous low-k materials without damaging their electrical properties with
current etching technologies. Moreover, the mechanical strength of the
dielectric, already significantly degraded by a decrease in network
connectivity in SIOCH, is now reduced even further when porosity is
added. For these reasons, technological roadmaps have constantly been
revised and chip manufacturers are currently planning to step back to
more robust dense materials with larger dielectric constant, thus
degrading the global integrated circuits performance.

The goal of this book is to present the difficulties encountered for
interconnect realization in very large-scale integrated (VLSI) circuits,
especially focusing on plasma-dielectric surface interaction. After an
introduction to interconnects presented in Chapter 1, we will see in
Chapter 2 the sensitivity of low-k and ultra-low-k films to plasma
etching and stripping steps which are the most critical steps in advanced
interconnects realization. Then, in Chapter 3 we will present the various
flows for dielectric films integration and their associated challenges.
Finally, we will discuss in Chapter 4 the options to further reduce the
dielectric constant for the future technological nodes.

Nicolas POSSEME
January 2015
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Introduction

In 1947, the bipolar transistor was invented by Bardeen, Brattain
and Shockley. Following this invention, in 1957, Kilby created five
transistors simultaneously, forming the first integrated circuit (IC). In
1960, the first metal oxide semiconductor field effect transistor
(MOSFET) on a silicon substrate with SiO, gate insulator was
fabricated. The MOSFETs are slow compared to bipolar devices but
are easier to fabricate and have a higher layout density. But both
devices (bipolar and MOSFET) suffer from high power dissipation
and have a restricted use in large integrated chip.

In 1963, the invention of the complementary metal oxide
semiconductor (CMOS) marked a new milestone in the area of
semiconductors. Indeed, the CMOS transistor has lower power
dissipation and the possibility to integrate millions of CMOS
transistors onto a chip. Since then, ICs have evolved from a 100-
transistors chip in 1966 to multibillion transistors circuits in 2010,
with the smallest device of less than 20 nm.

Semiconductor fabrication is composed of three major parts, front-
end-of-line (FEOL), middle-end-of-line (MEOL) and back-end-of-line
(BEOL), including different main steps such as deposition,

Chapter written by Nicolas POSSEME and Maxime DARNON.
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lithography, etching and cleaning. The whole process flow represents
several hundreds of steps for the manufacturing of chips.

The FEOL processes correspond to isolation, gate patterning,
spacer, extension and source/drain implantation, silicide formation
and dual stress liner formation.

The MEOL is mainly gate contact formation, which becomes more
and more challenging as device dimensions are reduced [MEB 14].

The BEOL allows transistor functionality by electrically
interconnecting transistors. Interconnects are composed of insulating
layers (dielectric) and metal levels. Interconnects (see Figure 1.1) are
composed of several metal levels. Each metal level is composed of
horizontal metallic lines connected to the lower and upper metal levels
through short vertical lines called vias.

Figure 1.1. lllustration of interconnects from metal 1 (M1) to metal 5
(M5) (lefi-hand side) and transverse cross section of two metal lines
of a similar metal level (right-hand side)

The combination of aluminum (Al) metal lines and silicon dioxide
(SiO,) as dielectric material has been used so far for interconnects in
ICs. The problem lies with the constant downscaling in device



