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Fluid Dynamics




Preface

This is Part 2 of a book series on fluid dynamics that will comprise the following
four parts:

Part 1. Classical Fluid Dynamics

Part 2. Asymptotic Problems of Fluid Dynamics
Part 3. Boundary Layers

Part 4. Hydrodynamic Stability Theory

The series is designed to give a comprehensive and coherent description of fluid dynam-
ics, starting with chapters on classical theory suitable for an introductory undergrad-
uate lecture course, and then progressing through more advanced material up to the
level of modern research in the field. Our main attention is on high-Reynolds-number
flows, both incompressible and compressible. Correspondingly, the target reader groups
are undergraduate and MSc students reading mathematics, aeronautical engineering,
or physics, as well as PhD students and established researchers working in the field.

In Part 1, we started with discussion of fundamental concepts of fluid dynamics,
based on the continuum hypothesis. We then analysed the forces acting inside a fluid,
and deduced the Navier—Stokes equations for incompressible and compressible fluids in
Cartesian and curvilinear coordinates. These were employed to study the properties of
a number of flows that are represented by the so-called exact solutions of the Navier—
Stokes equations. This was followed by detailed discussion of the theory of inviscid
flows for incompressible and compressible fluids. When dealing with incompressible
inviscid flows, particular attention was paid to two-dimensional potential flows. These
can be described in terms of the complex potential, allowing for the full power of the
theory of functions of complex variable to be employed. We demonstrated how the
method of conformal mapping might be used to study various flows of interest, such
as flows past Joukouskii aerofoils and separated flows. For the later the Kirchhoff
model was adopted. The final chapter of Part 1 was devoted to compressible flows of a
perfect gas, including supersonic flows. Particular attention was given to the theory of
characteristics, which was used, for example, to analyse the Prandtl-Meyer flow over
a body surface bend or a corner. The properties of shock waves were also discussed in
detail for steady and unsteady flows.

In the present Part 2, we introduce the reader to asymptotic methods. Also termed
the perturbation methods, they are now an inherent part of applied mathematics, and
are used in different branches of physics, including fluid dynamics. Asymptotic methods
played an important role in the progress achieved in fluid dynamics in the last century.
In Chapter 1 of Part 2 we discuss the mathematical aspects of the asymptotic theory.
We start with basic definitions, using for this purpose so-called coordinate asymptotic
expansions. The properties of asymptotic expansions are illustrated by asymptotic
analysis of integrals. This includes the discussion of the Watson lemma and of the
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method of steepest descent. However, our main attention is with parametric asymptotic
expansions. We discuss in detail the method of matched asymptotic expansions, the
method of multiple scales, the method of strained coordinates, and the WKB method.

Then in Chapters 2-5 we use the asymptotic approach to study various aspects of
the inviscid flow theory. We start in Chapter 2 with a discussion of the thin aerofoil
theory for subsonic flows. In addition to steady attached flows past thin aerofoils, we
examine the unsteady flows and flows with separation. Then in Chapter 3 we turn
our attention to supersonic flows past thin aerofoils. We first analyse the linear ap-
proximation to the governing Euler equations, which leads to a remarkably simple
relationship between the slope of the aerofoil surface and the pressure, known as the
Ackeret formula. We then extend our analysis to the second-order Busemann approz-
imation. Chapter 3 concludes with the study of a rather slow process of attenuation
of the perturbations in the far field, and formation of the N-wave.

Chapter 4 is devoted to transonic flows. These are the flows with the free-stream
Mach number, M, close to the unity, which is characteristic of a passenger aircraft
cruise flight. We first consider the far-field behaviour in the two-dimensional flow past
an arbitrary body, assuming that M., = 1. It appears that the corresponding solution
of the Euler equations can be found analytically in a self-similar form. We then turn
our attention to transonic flows past thin aerofoils. In this case the Euler equations can
be reduced to the Kdrmdn—Guderley equation. The latter is nonlinear and difficult to
solve analytically, but it turns into the Tricomi equation if considered in the hodograph
plane. We discuss two exact solutions of this equation—the first describes the transonic
flow separation at a corner of a rigid body contour, and the second the flow accelerating
into the Prandtl-Meyer expansion fan.

In Chapter 5 we discuss the properties of inviscid hypersonic flows, that is flows
with large values of the free-stream Mach number. We first assume that the body
placed in the flow has a blunt nose. In this case the shape of the shock, forming in
front of the body, and the entire flow between the shock and the body surface become
independent of the Mach number, M, provided that M, is large enough. This result
is known as the hypersonic stabilization principle. The Newton—Busemann theory is
discussed next. Then we turn our attention to the flows past thin bodies. These flows
can be studied using the so-called unsteady flow analogy. In particular, the effect of a
rounded nose on the hypersonic flow past a thin body may be described using analogy
with blast waves.

In the concluding Chapter 6 we turn our attention to viscous flow. The discussion of
various aspects of viscous flow theory will continue in Parts 3 and 4 of this book series.
Here, in Chapter 6 our interest is in the low-Reynolds-number flows. We consider two
classical problems of the low-Reynolds-number flow theory: the flow past a sphere and
the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty,
known as Stokes paradox. We shall show that this paradox can be resolved using the
formalism of matched asymptotic expansions.

The material presented in this book is based on lectures given by the author at
the Moscow Institute of Physics and Technology, the University of Manchester, and
Imperial College London.
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Introduction

During the last century there was a remarkable progress in fluid dynamics. It was
facilitated by the development of perturbation methods. In fact, many important con-
cepts of modern fluid dynamics, such as transonic flows or boundary layers, can only
be properly defined using a suitable perturbation approach.

Of course, fluid dynamics is not the only branch of physics where a degree of ide-
alization is used to formulate the governing equations. Neglecting ‘small effects’ is
a natural way of developing physical theories. Perturbation methods provide formal
mathematical foundation for this approach. An early example, where a study of a phys-
ical process led to formulation of a perturbation theory, was the celebrated work of
Lagrange (1811, 1815) and Laplace (1799-1825) on celestial mechanics. It is well known
that the mass of Sun is much larger than the mass of the planets in the Solar System.
Therefore, when calculating the Earth’s orbit, one can disregard (in the leading-order
approximation) the existence of other planets. If a more accurate prediction is re-
quired, then, in the first instance, one has to take into account the influence of the
Moon’s gravitation. The correspondent ‘perturbations’ to the leading order solution
are obtained using the mass ratio of the Moon and the Earth, & = muoon/MEarth, 88 a
small parameter. The main challenge is to ensure that the resulting solution remains
accurate for a long period of time. We shall discuss how this is done in Sections 1.5 and
1.6. Interestingly enough, the perturbation theory of Lagrange and Laplace played an
instrumental role in the discovery of planet Neptune. Its existence was theoretically
predicted in 1846 by L. C. Adams and U. Le Verrier based on the observed deviations
in motion of the planet Uranus. An early account of their works was given by Airy
(1947) who held the post of British Astronomer Royal at the time.

Simultaneously another important development took place. In 1843 Cauchy pub-
lished a note concerning the well-known series of Stirling for the logarithm of the
Euler’s Gamma function

By, 1
2n — 1) x2n—1

N
1 1
lnF(.l'):(x—§)lnm—m+§ln2w+;2n( + oy (L.1)

where Bj,, are the Bernoulli numbers. Cauchy pointed out that the series on the right
hand side of this formula, despite being divergent for all values of x, may be used in
computing InI'(xz) when z is large and positive. In fact, it was shown that, having
fixed the number N of terms taken, the absolute error committed by stopping the
summation at the Nth term is less than the absolute value of the next succeeding
term, and hence becomes arbitrarily small with increasing x.

The subject reappeared again after forty years in the investigation performed by
Poincaré (1886) upon the irregular behaviour of solutions to linear ordinary differ-
ential equations of a certain type. Poincaré demonstrated that at large values of the

Fluid Dynamics: Part 2: Asymptotic Problems of Fluid Dynamics, First Edition, Anatoly I. Ruban.
© Anatoly 1. Ruban 2015. First published in 2015 by Oxford University Press.



2 Introduction

argument z the solutions may be constructed formally in the form of series which are
divergent but nevertheless represent an actual solution in the same way as the above
formula for InI'(z). Poincaré applied to such series the name of asymptotic expansions.
In Sections 1.1 and 1.3 we will consider a number of examples of this kind. In par-
ticular, we will show that the Airy function, Ai(z), which is a solution of the Airy
equation

d2
—w—:cw=0,

and may be represented at large values of the argument z as

Adlz) = %'ﬁ_l/?m‘l/‘le‘%mm (1 - 438:0_3/2 + - ) as T — o0. (L.2)

Formulae like (I.1) and (I.2) are termed coordinate expansions. These are asymp-
totic expansions with the independent variable x playing the role of a large or small
parameter. We will discuss these in Sections 1.1 and 1.2. Then in Sections 1.3-1.7
we will turn our attention to the parametric expansions. The latter became a major
tool of theoretical analysis in fluid dynamics. The motion of fluids is described by the
Navier-Stokes equations.! These are nonlinear (more precisely, quasi-linear) partial
differential equations, which, if solved, might be used to analyse a wide variety of
complicated physical phenomena, including hydrodynamic instability and transition
to turbulence, boundary-layer separation from a rigid body surface and formation of
eddy wake, non-uniqueness and hysteresis of fluid flows, and so on. Because of the com-
plexity of the processes involved, it is hardly surprising that direct analytical solution
of the Navier—Stokes equations is impossible, except in a few rather simple situations.?
That is why the theoretical analysis of fluid flows was always based on seeking possi-
ble simplifications that might be introduced in the Navier-Stokes equations when, say,
Reynolds number Re is large and the flow may be treated as predominantly inviscid,
or Mach number M, is small and the flow behaves as if it were incompressible.

The parameters used in the asymptotic theory of fluid flows may be subdivided into
two categories. To the first one belong the so-called dynamic parameters, such as the
Reynolds number and Mach number, which explicitly appear in the non-dimensional
form of the Navier-Stokes equations.® They determine the relative significance of com-
peting physical processes taking place in moving fluid. Therefore, assuming one or more
parameters small or large, and applying asymptotic analysis, not only allows us to de-
rive simplified equations of motion but, what is no less important, reveals the physical
mechanisms of a fluid-dynamic phenomenon considered.

In the second category are geometric parameters such as the aspect ratio of an
aircraft wing A, and its relative thickness ¢ with respect to the chord. A wealth of
knowledge in the wing aerodynamics has been produced based on the assumption
of large aspect ratio, A > 1, which allows us to treat the flow over the wing as

1For derivation of the Navier-Stokes equation the reader is referred to Section 1.7 in Part 1 of this
book series.

2See Section 2.1 in Part 1.
3These are equations (1.7.37) on page 71 in Part 1.
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quasi-two-dimensional. Another widely used approximation arises from the thin wing
assumption, € < 1. For two-dimensional flows, the corresponding theory is termed the
thin aerofoil theory. We will discuss it in Chapters 2 and 3 for subsonic and supersonic
flows respectively. It is followed by the discussion of transonic flows in Chapter 4, where
we assume that M., —1 < 1, and hypersonic flows in Chapter 5; in the latter case we
assume that M., > 1. The theories presented in Chapters 2-5 belong to the class of
regular perturbations when a single asymptotic representation of the solution is valid
in the entire flow field. In the concluding Chapter 6 we turn to singular perturbations.
We consider the low-Reynolds-number flow past a sphere and circular cylinder. In
both cases, to describe the flow one needs to use the method of matched asymptotic
exrpansions.

This method takes its origin from the seminal paper by Prandtl (1904) on large-
Reynolds-number flows. Before Prandtl’s study, it was generally believed that fluid
flows with low viscosity may be described by the Euler equations of inviscid fluid mo-
tion; the latter follow from the Navier-Stokes equations by setting Re = oco. Prandtl
noticed that while in a large Reynolds number flow past a rigid body the Euler equa-
tions really hold in the bulk of the flow, the inviscid description appeared to be invalid
near the body surface. In a thin boundary layer adjacent to the wall another set of
equations, known as Prandtl’s boundary-layer equations, should be used.

Prandtl’s idea of subdividing the entire flow field into two separate regions where
different asymptotic forms of the governing equations apply, underwent thorough dis-
cussion in 1950s. Amongst those involved were Friedrichs (1953, 1954), Kaplun (1954,
1957, 1967), Kaplun and Lagerstrom (1957), Lagerstrom and Cole (1955), Cole (1957,
1968), and Van Dyke (1956, 1964). As a result of their studies the approach became a
formal mathematical technique termed the method of inner and outer expansions or,
after Bretherton (1962), the method of matched asymptotic expansions. A description
of this method is given in Section 1.4 in the present Part 2. We will then use it in
Part 3, devoted to the boundary-layer theory, and in Part 4, where the hydrodynamic
stability theory is discussed.



1
Perturbation Methods

1.1 Coordinate Asymptotic Expansions

To introduce the notion of asymptotic expansion, we will start with the Taylor expan-
sion which may be used in both ways: as a conventional series and as an asymptotic
erpansion.

1.1.1 Taylor expansion

Let us suppose that function f(z) is defined on the interval (a,b) of real variable z,
with a graph of this function shown in Figure 1.1. Let us further suppose that f(z)
has N + 1 continuous derivatives on (a,b), where N =0, 1, 2, ... . To construct the
Taylor expansion for f(z) we choose an arbitrary point z € (a,b) and write

f(z) = flzo) + ] £(€) d, (1.1.1)

where zo also belongs to the interval (a,b), and is referred to as the centre of the
sought expansion.
If N > 0, then the integral on the right-hand side of (1.1.1) can be evaluated using

the integration by parts:
/udv = uv — /Udu.

| /(@)

| =

|
|
|
|
I
|
|
|
I
|
|
|
|
|
|
|

a ZTo X b

Fig. 1.1: Graph of function f(z).

Fluid Dynamics: Part 2: Asymptotic Problems of Fluid Dynamics, First Edition, Anatoly I. Ruban.
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1.1. Coordinate Asymptotic Expansions 5

We choose

u= f/(ﬁ)! dv = df’
d'll':f”(é)d{, ’U:g_mv

and then (1.1.1) becomes

f(@) = f(zo) + (£ — 2) f(€)

- / (€ — 2)1"(€) de

= f(20) + (& — 20} f'(z0) — / (€ — ) F"(¢) de.

o

Repeating this procedure N times, yields

X fin)
1@ =3 1200 gy 4 Ru(a), (112)
n=0 :

where Ry (z) is the remainder term given by

xT

Ry(@) = 37 [(@= &Y (e de. (113)

To

Our intention is to use equation (1.1.2) without the remainder term:

N _s(n)
flo)=Y f (";") (z — zo)". (1.1.4)
n=0 :

n

It is obvious that the sum on the right-hand side of (1.1.4), being called the Taylor
expansion of function f(z), will represent f(z) properly if Ry(x) is small. There are
two ways to satisfy this requirement. First, if f(z) has infinite number of derivatives,
then we can increase the number of terms in (1.1.4) hoping that due to the coefficient
1/N! in front of the integral in (1.1.3) the remainder term will become small for a
chosen point z, or a range of points from (a,b). Indeed, under certain conditions
imposed upon f(z), the remainder term Ry(z) can be shown to tend to zero as
N — 00, leading to the Taylor series:

n

X f(n)
)= z f ('2:0) (x — zo)™. (1.1.5)
n=0 :

It represents a particular example of convergent series. The latter is defined as follows.
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Definition 1.1 Series (1.1.5) is said to converge to f(x) at a point x of the interval
(a,b) if, given arbitrary € > 0, it is possible to find large enough Ny such that'

N f£(n)
IO DAL RPN DY
n=0 i

for all N > Ny.

The Taylor series are of particular interest in complex analysis. It is known that any
function f(z) of the complex variable z, which has at least one continuous derivative
in an open region D of the complex plane, is infinitely differentiable in D. It therefore
may be represented by the Taylor series

X £(n)
=3 T o gy, (116

et n!
where the centre 2y should be positioned inside region D. The series on the right-hand
side of (1.1.6) is known to converge to f(z) for all z within a circle |z — zp| < R, where
radius R equals the minimal distance from 2y to a point in the complex plane where
f(z) fails to be analytic.
To illustrate this statement let us consider, as an example, the following function:

1
f(z) = z+1
Notice that this function has a singularity at z = —1. Since

f™(z) = (-1)"nl(z + 1)+,

the Taylor series for f(z), centred at zp = 0, is written as

p i 7= > o (=1)nzm (1.1.7)

n=0

The radius R of convergence of (1.1.7) is easily calculated using the root test.? It states
that a series

f2) =3 wal(2)
n=0

is convergent, if
M= Tm |wa|"™ <1,

n—oo

and is divergent, if M > 1. Since the terms of the series (1.1.7) are w,(z) = (—1)"2",
it follows that M = |z|. Thus the convergence radius is R = 1, that is the series (1.1.7)
converges for |z| < 1 and is divergent for |z| > 1, with the singular point z = —1
situated on the boundary of the convergence region; see Figure 1.2.

'In general Ny depends on a position z inside the interval (a, b). If Ny may be chosen independently
of z then the series (1.1.5) is said to converge to f(z) uniformly on (a,b).

2See, for example, Dettman (1965).
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®

|

Fig. 1.2: The circle of convergence of the Taylor series (1.1.7).

Let us now return to equations (1.1.2), (1.1.3), and suppose that function f(z)
has only a finite number of derivatives or, for some reason, calculating higher deriva-
tives proves difficult. The Taylor expansion can nevertheless be used to represent f(z)
provided that x lies close to xg. Indeed the remainder term (1.1.3) may be bounded
as

R (@)] < 57 [ lo— €™ [FV+0(6)] dgl

If | f(N+1)(€)| is bounded on (a, b), that is there exists a positive constant L such that

|fN V@) < L forall £ € [xo,2],

then

L T
Rv(@)] < 57 [ o - €PVdiel,

which is easily integrated to yield®

T
= L|IL‘—~$0|N+1. (1.1.8)

| R (z)] < P N+ 1)

(N +1)!

xo

Hence, given an arbitrary ¢ > 0, it is possible to find d(e) > 0, such that

N £(n)
(@) = @) - 3 Lo @ a0 <

3The integration may be performed by assuming first that > xo, and then the calculations can
be repeated for z < zg.
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for all z from the d-vicinity of point zg, namely, for all z satisfying the condition
|z — zo| < 8(€).

Treated in this way the Taylor expansion (1.1.4) represents an example of asymptotic
erpansion.

Using (1.1.4) with z¢ = 0, the Taylor expansions for the following elementary
functions may be easily found to be

. 3

em=1+x—l—§+%+”-, (1.1.9a)

2 3

1n(1+$):x_%+%_+..., (1.1.9b)
 z°

sinx:x—y%-a-i—---, (1.1.9¢)
2 4

cosle—%+%+"-, (1.1.94)

= = 1}y ==
(1+z)* =1+am+Mm2+ ale—Dia 2)$3+"'- (1.1.9¢)

2! 3!
1.1.2 Asymptotic expansion of an integral
To give another example of an asymptotic expansion, let us consider the function

V(z) = %/e—‘?dg. (1.1.10)

T

Our task will be to evaluate ¥(x) at large values of z. To perform this task we rewrite
the integral in (1.1.10) as

o [e's) _522
_52 = € E
Jetae= [ ot
and use the integration by parts with
& dv = e~ 2¢ d¢
U 5’ v=ce ;
1 i
du —2—52 dg, v=—e"*
We have
€2 o0 € 2 ¢
_&2 __c - o (5 - e
/e €=, f%zd& 20 /252“




