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Preface

In the last years, there has been a great production of data that come from differ-
ent application contexts. However, although technological progress provides several
facilities to digitally encode any type of event, it is important to define a suitable
representation model which underlies the main characteristics of the data. This as-
pect is particularly relevant in fields and contexts where data to be archived can not
be represented in a fix structured scheme, or that can not be described by simple

numerical values. We hereinafter refer to these data with the term complez data.

Although it is important define ad-hoc representation models for complex data,
it is also crucial to have analysis systems and data exploration techniques. Ana-
lysts and system users need new instruments that support them in the extraction of
patterns and relations hidden in the data. The entire process that aims to extract
useful information and knowledge starting from raw data takes the name of Knowl-
edge Discovery in Databases (KDD). It starts from raw data and consists in a set of
specific phases that are able to transform and manage data to produce models and
knowledge. There have been many knowledge extraction techniques for traditional

structured data, but they are not suitable to handle complex data.

Investigating and solving representation problems for complex data and defining
proper algorithms and techniques to extract models, patterns and new information
from such data in an effective and efficient way are the main challenges which this
thesis aims to face. In particular, two main aspects related to complex data man-
agement have been investigated, that are the way in which complex data can be
modeled (i.e., data modeling), and the way in which homogeneous groups within
complex data can be identified (i.e., data clustering). The application contexts that
have been objective of such studies are time series data, uncertain data, text data,

and biomedical data.

It is possible to illustrate research contributions of this thesis by dividing them

into four main parts, each of which concerns with one specific area and data type:
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Time Series — A time series representation model has been developed, which
is conceived to support accurate and fast similarity detection. This model is
called Derivative time series Segment Approzimation (DSA), as it achieves a
concise yet feature-rich time series representation by combining the notions of

derivative estimation, segmentation and segment approximation.

Uncertain Data — Research in uncertain data mining went into two directions.
In a first phase, a new proposal for partitional clustering has been defined by
introducing the Uncertain K-medoids (UK-medoids) algorithm. This approach
provides a more accurate way to handle uncertain objects in a clustering task,
since a cluster representative is an uncertain object itself (and not a deter-
ministic one). In addition, efficiency issue has been addressed by defining a
distance function between uncertain objects that can be calculated offline once

per dataset.

In a second phase, research activities aimed to investigate issues related to hi-
erarchical clustering of uncertain data. Therefore, an agglomerative centroid-
based linkage hierarchical clustering framework for uncertain data (U-AHC')
has been proposed. The key point lies in equipping such scheme with a more
accurate distance measure for uncertain objects. Indeed, it has been resorted
to information theory field to find a measure able to compare probability dis-

tributions of uncertain objects used to model uncertainty.

Text Data — Research results on text data can be summarized in two main
contributions. The first one regards clustering of multi-topic documents, and
a framework for hard clustering of documents according to their mixtures
of topics has been proposed. Documents are assumed to be modeled by a
generative process, which provides a mixture of probability mass functions
(pmfs) to model the topics that are discussed within any specific document.
The framework combines the expressiveness of generative models for document
representation with a properly chosen information-theoretic distance measure

to group the documents.

The second proposal concerns distributional clustering of XML documents, fo-
cusing on a the development of a distributed framework for efficiently cluster-
ing XML documents. The distributed environment consists of a peer-to-peer
network where each node in the network has access to a portion of the whole

document collection and communicates with all the other nodes to perform a
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clustering task in a collaborative fashion. The proposed framework is based
on modeling and clustering XML documents by structure and content. In-
deed, XML documents are transformed into transactional data based on the
notion of tree tuple. The framework is based on the well-known paradigm of
centroid-based partitional clustering to conceive the distributed, transactional

clustering algorithm.

Biomedical Data — Research results on time series and uncertain data have
been involved to support effective and efficient biomedical data management.
The focus regarded both proteomics and genomics, investigating Mass Spec-
trometry (MS) data and microarray data. In the specific, a Mass Spectrometry
Data Analysis (MaSDA) system has been defined. The key idea consists in
exploiting temporal information implicitly contained in MS data and model
such data as time series. The major advantages of this solution are the di-
mensionality and the noise reduction. As regards micrarray data, U-AHC
has been employed to perform clustering of microarray data with probe-level
uncertainty. A strategy to model probe-level uncertainty has been defined,
together with a hierarchical clustering scheme for analyzing such data. This
approach performs a gene-based clustering to discover clustering solutions that
are well-suited to capture the underlying gene-based patterns of microarray
data.

The effectiveness and the efficiency of the proposed techniques in clustering com-
plex data are demonstrated by performing intense and exhaustive experiments, in
which such proposals are extensively compared with the main state-of-the-art com-

petitors.

Giovanni Ponti
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