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1. An Introduction to the Photosynthetic Bacteria and their Pigments

The unique physiological characteristic of the photosynthetic bacteria
is their ability to grow anaerobically in the light, a property conferred
upon them by their photosynthetic pigment system. Unlike green plant
photosynthesis oxygen is not evolved in the bacterial process, and,
connected with this, they require an exogenous reductant (Stanier,
1961; van Niel, 1962; Vernon, 1964 ; Gest, 1966). The different genera of
photosynthetic bacteria characteristically use either reduced inorganic
sulphur compounds, hydrogen, or organic substrates as reductant ; they

1
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THE BACTERIAL PHOTOSYNTHETIC APPARATUS 3

also vary with respect to their ability to use carbon dioxide as sole carbon
source (Table 1).

The overall process of bacterial photosynthesis may be represented by
Fig. 1. There is strong experimental evidence for this scheme as a general
outline though the precise sequence of events is yet to be established
(Vernon and Ke, 1966 ; Gest, 1966). The scheme in Fig. 1 fits observations
made largely with Rhodospirillum rubium, and variations in detail are
likely in other organisms.

Cytochrome ¢ <—— Cytochrome b ATP
Cytochromoid?
Light “~> | Chl | Chl
850 | 890
JI Ubiquinone ADP +Pi

Ferredoxin —> Flavoprotein —> NAD

Fic. 1. Possible pathway of light-induced electron flow in Rhodospirillum
rubrum.

It has been well established that particulate preparations from the
photosynthetic bacteria catalyse anaerobically: (1) light-dependent
synthesis of ATP in the absence of an external reducing agent (photc-
phosphorylation), and (2) light-dependent formation of reduced nicotin-
amide nucleotides in the presence of weak reductants such as succinate or
certain reduced dyes (photoreduction). By analogy with the photo-
synthetic apparatus of the plant chloroplast the bacterial system might
be expected to be associated with some type of organized structure and
these structures are the concern of this review.*

A. THE PHOTOSYNTHETIC PIGMENTS

1. Chemistry
In common with other photosynthetic forms of life the bacteria have
both carotenoids and chlorophylls. The variety of carotenoids among the

* The term chromatophore will be used for the pigmented particles isolated from
cell-free extracts. When referring to the putative photosynthetic structure in
intact cells the less precise terms ‘‘chromatophore material” or ‘‘photosynthetic
apparatus” will be used.
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different species is great (Jensen, 1963; Schmidt et al., 1965). Their
probable function is to harvest light at wavelengths which are not
absorbed by chlorophyll and also to protect cells from photodynamic
oxidation reactions (Stanier, 1960; Dworkin, 1958).

(“:H, (“}Hz
CH g CHj CH g CHs
HC SN\ CH=CEH; HsC \ e \ CH;—CHj

N N
H
H H
\ H / \
N N \
HsCT\ ! o / “CH; - HaCT\ - / ~CHj
H
e e o HC—C—O
(Ha s H oocH,
COO0H COOH COO
Protoporphyrin Mg-vinylpheoporphyrin as
c_o H CH;
CHz—CHs
\ N
N
/ ~CHs
|
(2 HC——C=0
CH:  G00.CHs
C00.C20H3p
Bacteriochlorophyll

F1c. 2. Scructures of protoporphyrin, Mg-vinylpheoporphyrin as (protochloro-
phyllide ) and bacteriochlorophyll.

So far, three types of chlorophyll have been recognized in photo-
synthetic bacteria (Fig. 2) of which bacteriochlorophyll @ is the most
widely distributed (Jensen ef ai., 1964 ; Allen, 1966). Chlorobium chloro-
phylls 650 and 660, a nomenclature based on their red absorption maxima
in ether, are unique to the green sulphur-bacteria (Holt, 1966). Significant
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differences in their structure from that of bacteriochlorophyll a are: (a)
the Chlorobium pigments have a dihydro- rather than a tetrahydropor-
phyrin ring structure ; consequently, the red maxima are shifted towards
the blue; (b) they lack the —COOCHj grouping on the cyclopentanone
ring ; (c) they are esterified with farnesol rather than with phytol; (d) the
660 pigment has an alkyl substituent on the §-methene carbon atom of the
porphyrin ring. !

A recent development is the recognition of bacteriochlorophyll b in a
new species, Rhodopseudomonas viridis (Eimhjellen et al., 1963; Drews
and Giesbrecht, 1965, 1966). This pigment is characterized by a red
maximum in acetone at 795 my, but its structure is yet to be determined.
Its discovery should alert workers to careful scrutiny of new isolates for
yet more forms of chlorophyll.

2. Spectrum of Chlorophylls in vivo: Reaction-Centre Chlorophyll

The early spectroscopic observations of Wassink and of French (see
Rabinowitch, 1951) indicated that the bacterial chlorophylls were bound

0-8

0-6

Extinction
o
D

0-2

0o

1 ] A e G A0 SZ4 1 §
650 700 750 800 850 900 950
Wavelength (mp)

Fia. 8. Spectrum of bacteriochlorophyll from Rhodopseudomonas spheroides
in vivo (——) and in methanol (——-).
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in vivo in the form of macromolecular complexes. The red absorption
maxima of all forms of chlorophyll found so far in bacteria exhibit a
marked shift of at least 100 mp towards the blue when extracted into
organic solvents. Such a change can be reasonably attributed to a release
of the pigment from a bound form. The in vivo spectra also show several
maxima in the red whereas the extragted pigment shows only one red
peak (Olson and Stanton, 1966 ; Fig. 3). The multiple peaks in the in vivo
spectra suggest that chlorophyll molecules are in association with
different complexes, and the physiological significance of these is now
being clarified (Clayton, 1966). The work with preparations from
Rhodopseudomonas spheroides suggests that the bulk of the chlorophyll,
associated with a complex absorbing at 850 myu (P-850), functions merely
to harvest light. The complex absorbing at 870 mu (P-870) accounts for
only about 5%, of the total pigment but appears to represent the photo-
synthetic reaction centre. This pigment, but not P-850, is bleached (i.e.
oxidized) reversibly upon illumination ; this phenomenon is shown most
clearly in preparations which have been treated by methods which pre-
ferentially destroy P-850 (Clayton, 1963, 1966). The isolation of mutant
strains, which have the normal complement of P-850 yet cannot grow
photosynthetically since they lack P-870, provides the most convincing
evidence for the role of P-870 as the photosynthetic centre (Sistrom and
Clayton, 1964). A complex absorbing at 800 my is closely associated with
P-870 (Clayton and Sistrom, 1966). There is evidence for reaction-centre
chlorophyll in other photosynthetic bacteria. In the green sulphur-
bacteria it seems that bactzriochlorophyll a is the reactive form, though
the bulk of the pigment of the cell is Chlorobium chlorophyll (Olson and
Romano, 1962; Olson, 1966).

B. ENVIRONMENTAL EFFECTS ON PIGMENT SYNTHESIS

Photosynthetic bacteria, in common with plants, have the capacity to
regulate chlorophyll synthesis in response to the demands of the environ-
ment. In the bacteria the key factors are light intensity and, in the case of
the Athiorhodaceae, oxygen pressure (see Tables 3, p. 15, and 6, p. 28).
The elegant studies of Cohen-Bazire et al. (1957) and of Sistrom (1962b)
showed that cultures of Rps. spheroides and Rsp. rubrum growing
anaerobically respond to an increase or to a decrease in light intensity
by suppression or stimulation respectively of synthesis of the photo-
synthetic pigments. Consequently, cells grown at high intensities
contain less chlorophyll and carotenoid per unit of protein than do those
grown with low illumination. Repression of pigment synthesis by oxygen
was also observed when this gas was introduced into cultures growing
under continuous illumination. Oxygen repression is critically dependent



THE BACTERIAL PHOTOSYNTHETIC APPARATUS

Fic. 4. Electron micrograph of section of photosynthetically grown Rhodospirillum

rubrum (Vatter and Wolfe, 1958). CW =cell wall; CM = cytoplasmic membrane;

Ch =chromatophore. Inset: isolated chromatophores; the line indicates 1 .

Reproduced by kind permission of the authors and the editors of the Journal of
Bacteriology.

| 8
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on the oxygen concentration and occurs only under high aeration. Many
of the Athiorhodaceae form chlorophyll and carotenoids when the oxygen
concentration is low and, under such conditions, the specific pigment
content may reach that of photosynthetic cultures (Lascelles, 1959;
1960a). Formation of the pigments in response to decreased oxygen
pressure occurs in the dark; a light-dependent step is therefore not
obligatory (or may not even occur) in chlorophyll synthesis by the
bacteria.

II. The Structure and Location of Chromatophore Material
A. DiscovERY AND DEFINITION OF CHROMATOPHORES

The term “chromatophore’ was coined by Schachman et al. (1952) for
the relatively homogeneous, pigmented particles which were prepared by
differential centrifugation of extracts of Rsp. rubrum. They contained the
entire complement of photosynthetic pigments and were about 600 A in
diameter. Particles of this size (about 1908) were not found in extracts of
the organism grown aerobically and therefore devoid of photosynthetic
pigments. It appeared that the chromatophores represented a special-
ized structure to housé¢ the photosynthetic pigments. Later studies
by Frenkel (1956, 1958) showed that chromatophores isolated from
Rsp. rubrum catalysed photophosphorylation and the photoreduction
of NAD in the presence of succinate, as well as other photoreduction
reactions, indicating that they represented the bacterial photosynthetic
apparatus.

B. ELEcTRON MICROSCOPY OF CELLS

Electron microscopy of sectioned cells of photosynthetic bacteria
showed them to contain structures similar in size and appearance to
isolated chromatophores (Vatter and Wolfe, 1958). Rsp. rubrum and
Rps. spheroides exhibited discrete membrane-bound vesicles (in dia-
meter 500-1000 A and 400-800 A respectively) which appeared to be
dispersed throughout the cytoplasm (Fig. 4). The association of the
vesicles with the photosynthetic pigments was suggested by their absence
from non-pigmented cells of Rsp. rubrum grown aerobically. It has since
been firmly established with many organisms that the number and extent
of the vesicular structures is directly related to the pigment content of the
cells (Cohen-Bazire and Kunisawa, 1963 ; Drews and Giesbrecht, 1965;
Gibbs et al., 1965; Holt and Marr, 1965¢; Holt et al., 1966D).

The vesicular structures found in Rsp. rubrum are not typical of
all photosynthetic bacteria (Table 2). Some exhibit stacks of paired
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TaBLE 2. Appearance of Chromatophore Material in Electron Micrographs of

Cell Sections

Organism Appearance of structure Refer-
ence
Chlorobium thiosulphatophilum Oblong vesicles arranged around 1
Chlorobium limicola periphery, immediately under the 1
Chloropseudomonas ethylicum cytoplasmic membrane; 1000-1500 2
A long, 300-400 A wide

Chromatium strain D Membrane-bound vesicles throughout 3
Chromatium okenii cytoplasm 3
Thiospirillum jenseni 3
Thiopedia sp. 3
Thiocapsa sp. Vesicles and large lamellar structure 3
Rhodospirillum rubrum Membrane-bound vesicles throughout 3.4,5
Rhodopseudomonas spheroides the cytoplasm, 400-1000 A diameter 4,6
Rhodospirillum molischianum  Discrete lamellar structures at peri- 7,8, 9
Rhodospirillum fulvum phery 10
Rhodospirillum photometricum 10
Rhodopseudomonas palustris Extensive lamellar structure disposed 10
Rhodopseudomonas viridis around periphery 11
Rhodomicrobium vannielii 12

References: (1) Cohen-Bazire et al. (1964); (2) Holt et al. (1966a); (3) Cohen-Bazire
(1963); (4) Vatter and Wolfe (1958); (5) Hickman and Frenkel (1959, 1965b); (6) Drews
and Giesbrecht (1963); (7) Giesbrecht and Drews (1962); (8) Gibbs et al. (1965); (9)
Hickman and Frenkel (1965a); (10) Cohen-Bazire and Sistrom (1966); (11) Drews and
Giesbrecht, 1965; Giesbrecht and Drews, 1966; (12) Vatter ef al. (1959).

lamellae, similar to the structures found in blue-green algae, and
arranged variously according to the organism. In Rhodomicrobium
vannielii, for instance, the lamellae are arranged concentrically around
the periphery of the cell (Vatter et al., 1959) whereas in Rhodospirillum
molischianum (Fig. 5) the lamellae appear as discrete discs at inter-
vals around the periphery (Drews, 1960). Perhaps the most remarkable
structures are the large oblong vesicles found in the green sulphur-
bacteria (Fig. 6; Cohen Bazire et al., 1964; Holt et al., 1966a). These lie
immediately under the peripheral membrane.

Conclusive proof that these various structures are the site of the photo-
synthetic pigments is difficult to obtain in the absence of techniques for
locating the pigments in cell sections. Indirect evidence has been provided
in many cases by observing a correlation between the number and extent
of the structures with the pigment content of the cells. Also, the appear-
ance of pigmented fractionsisolated from disrupted cells has been shown
with some organisms to resemble the structures found in cell sections



F1¢. 5. Electron micrograph of a section of Chlorobium thiosulphatophilum showing
the complex cell wall (w) with its rod-shaped extensions (ex), the cell membrane
(m) and ellipsoidal vesicles (cv) adjacent to but distinct from the peripheral
membrane (vm). Two large mesosomal elements (M) and a granule of polymeta-
phosphate (p) are also visible. From Cohen-Bazire et al. (1964). Reproduced by kind
permission of the authors. and the editors of the .Journal of Cell Biology.
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