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Preface

Since the discovery of the light emitting properties of the phenyl-based organic semi-
conductors in 1990 there has been a huge growth of interest in conjugated polymers.
The potential device applications are enormous, ranging from optical switching to solar
cells and light emitting devices. These new developments are a direct consequence of
the active research in the 1980s on conjugated nonelectroluminescent polymers, such as
trans-polyacetylene. Polyacetylene has particularly interesting and unusual low-lying
electronic excitations, and has attracted much experimental and theoretical interest,
culminating in the award of the Nobel prize for chemistry in 2000 for research in this
field.

The progress in our understanding of the fundamental physics of conjugated poly-
mers, which provides a crucial underpinning to the technological applications, has also
been large. This progress has been driven by experimental, theoretical, and computa-
tional developments. A number of very careful and elegant linear and nonlinear optical
spectroscopies over the last two decades have established the energies and symmetries
of the excited states. Meanwhile, computational advances have been driven by the
development of sophisticated numerical techniques, coupled with cheaper and more
powerful computers. One of these numerical techniques is the density matrix renor-
malization group (DMRG) method. This method is highly suited for solving correlated
one-dimensional problems.

Conjugated polymers behave as quasi-one-dimensional systems owing to their strong
intramolecular interactions and rather weak intermolecular interactions. As a conse-
quence, electron-electron interactions are weakly screened, and thus both electron-
electron interactions and electron-nuclear coupling are fundamentally important in
determining the electronic behaviour. Electronic interactions play a crucial role in
determining the nature of electronic excitations as they completely change the nonin-
teracting electronic description. Moreover, the coupling of these correlated electronic
states to the nuclei is also a delicate and complicated problem. Together, electronic
interactions and electron-nuclear coupling determine the relative energetic ordering of
the electronic states, and this, in turn, largely determines the optical properties of con-
jugated polymers. This understanding of the origin and nature of the electronic states
helps us to explain why some conjugated polymers, for example poly(para-phenylene),
are electroluminescent, while others, for example trans-polyacetylene, are not.

One of the key aims of this book is to explain how electron-electron interactions
and electron-nuclear coupling determine the types and character of the low-lying elec-
tronic states. Since these effects are complicated, our strategy will be to start with the
simplest approximation of noninteracting electrons and gradually develop the full de-
scription. At each step care will be taken to explain how electron-electron interactions
and electron-nuclear coupling modify the predictions of the simpler approximations.
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We will see that one of the reasons why understanding the electronic properties
of conjugated polymers is such a challenge is because the electronic potential energy
is comparable to the electronic kinetic energy. In other words, the relevant parame-
ter regime is intermediate between the weak and strong electron-electron interaction
limits. A useful strategy is therefore to tackle these systems from both the weak and
strong coupling extremes. In fact, light emitting polymers lie on the weak-coupling side
of the intermediate regime, whereas nonelectroluminescent polymers (such as trans-
polyacetylene) lie on the strong-coupling side.

We focus on semiempirical models of m-conjugated systems. There are two advan-
tages to this strategy over studying ab inttio models. First, reduced basis models in
one dimension can be solved essentially exactly via the DMRG method for very large
systems. Thus, there is no need to make approximations in the method which might
obscure or prejudice an understanding of the physics. Second, being approximate, re-
duced basis models retain some symmetries not present in the ab initto models. In
particular, electron-hole symmetry is particularly useful in characterizing neutral ex-
cited states. We also remark that although they are semiempirical, m-electron models
are carefully parametrized so that they also provide accurate predictions of excited
state energies.

Solving very large systems by the DMRG method reveals the physics of conjugated
polymers not present in conjugated molecules, namely that when the size of the chain
(or more precisely, the conjugation length) exceeds the spatial extent of the inter-
nal structure of the excited states a quasi-particle description becomes appropriate.
Conjugated polymers exhibit a wealth of different quasi-particles: solitons, excitons,
magnons, polarons, etc. It is an aim of this book to explain the origin and physical
consequences of these quasi-particles. In particular, the description of an exciton as
two independent quasi-particles will prove to be a very useful concept.

Having established how two key effects in conjugated polymers (electronic inter-
actions and electron-nuclear coupling) affect their electronic properties, the third key
effect will be discussed, namely, disorder. Most conjugated polymer systems are subject
to conformational and environmental disorder. Disorder localizes charges and excitons,
and determines their energetic and spatial distributions. An understanding of the role
of disorder is a necessary prerequisite for the development of theories of charge and
energy transport.

Nonlinear optical measurements provide the most direct probe of the electronic
states. Conversely, the nonlinear susceptibilities can be calculated if there exists a
theoretical understanding of the excited states. We describe the theory of linear and
nonlinear optical processes, and recast the so-called essential states model in terms of
the primary excitons.

We demonstrate how our theoretical understanding of excited states enables us
to make a consistent interpretation of experimental results. Two chapters draw these
themes together in discussing trans-polyacetylene, and the technologically important
phenyl-based light emitting polymers.

Once an understanding of these intramolecular processes is established, a final aim
of this book will be to explain electronic processes arising from intermolecular interac-
tions. Thus, energy transfer and migration, and excited state complexes involving two



Preface vii

or more polymer chains are described. Another important consequence of interchain
interactions is dispersion interactions, which significantly modify the energy of some
intrachain excitations. An understanding of this effect is crucial to the interpretation
of optical experiments.

Throughout we apply models to, and develop theories for, conjugated polymers
with relatively simple chemical structures, e.g., trans-polyacetylene and poly(para-
phenylene). These polymers serve as model systems to understand the generic elec-
tronic properties of most classes of conjugated polymers.

The book is therefore organized as follows. Chapter 1 gives a brief overview of the
electronic properties of conjugated polymers. Our basic models for describing these
properties are semiempirical m-electron models. So, Chapter 2 introduces and moti-
vates these models. Next, we consider the solution of these models in various limits:
noninteracting electrons with fixed geometry in Chapter 3, noninteracting electrons
with electron-nuclear coupling in Chapter 4, and interacting electrons with fixed ge-
ometry in Chapter 5. Chapter 6 is devoted to a discussion of excitons, as these are so
important in determining the photophysical properties of conjugated polymers. The
electronic states of interacting electrons with electron-nuclear coupling are described
Chapter 7. The next two chapters illustrate the applicability of the concepts thus
developed via a discussion of the experimental and theoretical investigations of trans-
polyacetylene and light emitting polymers in Chapters 8 and 9, respectively. The roles
of disorder and electron-nuclear coupling in localizing excitons are then described in
Chapter 10, where the fundamental concept of a chromophore is given a quantitative
definition. Chapter 11 introduces the nonlinear optical spectroscopies that are used
to identify the excited states of conjugated polymers discussed in Chapters 8 and 9.
Finally, Chapter 12 describes excitonic processes in conjugated polymers.

This book was written with two kinds of readers in mind, the first being experi-
mentalists who wish to understand and interpret their experimental data in terms of
the fundamental electronic and optical properties of conjugated polymers. The other
type of readers are theoretical and computational chemists and physicists who want
both to understand the fundamental properties of conjugated polymers and to develop
models and perform calculations of their own. For these readers there are a number of
appendices containing material too technical for the main chapters.

Oxford William Barford
August 2012
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1
Introduction to conjugated polymers

Research into the electronic, optical, and magnetic properties of conjugated polymers
began in the 1970s after a number of seminal experimental achievements. First, the
synthesis of polyacetylene thin films (It6 et al. 1974) and the subsequent success in
doping these polymers to create conducting polymers (Chiang et al. 1977) established
the field of synthetic metals. Second, the synthesis of the phenyl-based polymers and
the discovery of electroluminescence under low voltages in these systems (Burroughes
et al. 1990) established the field of polymer optoelectronics.

The electronic and optical properties of conjugated polymers, coupled with their
mechanical properties and intrinsic processing advantages, means that they are par-
ticularly attractive materials for the electronics industry. There are many potential
applications including, light emitting devices, nonlinear optical devices, photovoltaic
devices, plastic field-effect transistors, and electromagnetic shielding. The discovery
and development of conductive polymers was recognized by the award of the No-
bel prize for chemistry in 2000 to Heeger (2000), MacDiarmid (2000), and Shirakawa
(2000).

A conjugated polymer is a carbon-based macromolecule through which the va-
lence m-electrons are delocalized.! Trans-polyacetylene, illustrated in Fig. 1.1, is a lin-
ear polyene, whose ground state structure is composed of alternating long and short
bonds. Also shown in Fig. 1.1 are two other linear polyenes, cis-polyacetylene and
polydiacetylene. The light emitting polymers, for example, poly(para-phenylene) (or
PPP) and poly(para-phenylene vinylene) (or PPV), are characterized by containing a
phenyl ring in their repeat units. PPP and PPV are illustrated in Fig. 1.2.

As well as their many important technological applications, conjugated polymers
are also active components in many biological photophysical processes, for example, as
light collectors in photosynthesis, and in the vision mechanism via photoisomerization.
Charge transport in organic molecules is also an important component of cellular
function. Many of the concepts developed in this book are therefore applicable to
these biological systems.

Conjugated polymers exhibit electronic properties that are quite different from
those observed in the corresponding inorganic metals or semiconductors. These unusual
electronic properties may essentially be attributed to fact that conjugated polymers
behave as quasi-one-dimensional systems owing to their strong intramolecular elec-
tronic interactions and relatively weak intermolecular electronic interactions. Weak
intermolecular electronic interactions (arising from poor electronic wavefunction over-

1Conjugate from the Latin conjugatus, meaning to join or unite.



2 Introduction to conjugated polymers

trans-polyacetylene

cis-polyacetylene

Fig. 1.1 The carbon backbone of some linear polyenes. The hydrogen atoms are not shown.
More detailed chemical structures are illustrated in Chapter 2.

lap) coupled to strong dissipation (or dephasing) mechanisms means that quantum
mechanical coherence is generally confined to a single chain, or at most a few other
chains. Electronic wavefunctions are therefore typically localized on single chains, or
to pairs of chains in the case of excited state complexes. This quasi-one-dimensionality
also means that electron-electron interactions are weakly screened. Thus, electronic
correlations are important in determining the character of the electronic states. An-
other important factor in determining the character of the electronic states is that the
electrons and nuclei are strongly coupled. As for electronic interactions, the effects of
electron-nuclear coupling are enhanced in low dimensions.

Much early theoretical work on conjugated oligomers and polymers treated electron-
electron and electron-nuclear interactions independently. In the 1950s the focus was
on the role of electron-nuclear interactions in causing a metal-semiconductor transi-
tion in one-dimensional metals (Frohlich 1954; Peierls 1955), and in determining the
bond alternation in linear polyenes (Ooshika 1957, 1959; Longuet-Higgins and Salem
1959). It was also realized that a broken-symmetry ground state of bond alternation
implies bond defects between different domains of bond alternation (Ooshika 1957,
Longuet-Higgins and Salem 1959), and to associated mid-gap electronic states (Pople
and Walmsley 1962). Theoretical and experimental investigations into excited states
and their associated bond defects (or solitons) grew rapidly after the introduction of a
simplified model of electron-nuclear interactions in trans-polyacetylene by Su, Schri-
effer, and Heeger (Su et al. 1979). These developments are reviewed in (Heeger et al.
1988).

An alternative point of view, namely that electron-electron interactions are impor-
tant in determining the electronic properties in conjugated polymers, was advocated
by Ovchinnikov and coworkers (Ovchinnikov et al. 1973), who argued that electronic



