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Preface

In 1982 Shigefumi Mori outlined a plan — now called Mori’s program or the
minimal model program — whose aim is to investigate geometric and coho-
mological questions on algebraic varieties by constructing a birational model
especially suited to the study of the particular question at hand.

The theory of minimal models of surfaces, developed by Castelnuovo and
Enriques around 1900, is a special case of the 2-dimensional version of this
plan. One reason that the higher dimensional theory took so long in coming is
that, while the minimal model of a smooth surface is another smooth surface,
a minimal model of a smooth higher dimensional variety is usually a singu-
lar variety. It took about a decade for algebraic geometers to understand the
singularities that appear and their basic properties. Rather complete descrip-
tions were developed in dimension 3 by Mori and Reid and some fundamental
questions were solved in all dimensions.

While studying the compactification of the moduli space of smooth surfaces,
Kollar and Shepherd-Barron were also led to the same classes of singularities.

At the same time, Demailly and Siu were exploring the role of singular
metrics in complex differential geometry, and identified essentially the same
types of singularities as the optimal setting.

The aim of this book is to give a detailed treatment of the singularities that
appear in these theories.

We started writing this book in 1993, during the 3rd Salt Lake City summer
school on Higher Dimensional Birational Geometry. The school was devoted
to moduli problems, but it soon became clear that the existing literature did
not adequately cover many properties of these singularities that are necessary
for a good theory of moduli for varieties of general type. A few sections were
written and have been in limited circulation, but the project ended up in limbo.

The main results on terminal, canonical and log terminal singularities were
treated in Kollar and Mori (1998) and for many purposes of Mori’s original
program these are the important ones.

X



X Preface

There have been attempts to revive the project, most notably an AIM confer-
ence in 2004, but real progress did not restart until 2008. At that time several
long-standing problems were solved and it also became evident that for many
problems, including the abundance conjecture, a detailed understanding of log
canonical and semi-log canonical singularities and pairs is necessary. In retro-
spect we see that many of the necessary techniques have not been developed
until recently, so the earlier efforts were rather premature.

Although the study of these singularities started only 30 years ago, the theory
has already outgrown the confines of a single monograph. Thus many of the
important developments could not be covered in detail. Our aim is to focus on
the topics that are important for moduli theory. Many other areas are developing
rapidly and deserve a treatment of their own.

Sections 6.1, 8.4, 8.5 and 10.6 were written by SK. Sections 2.5, 6.2 and the
final editing were done collaboratively.
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Introduction

In the last three decades Mori’s program, the moduli theory of varieties and
complex differential geometry have identified five large and important classes
of singularities. These are the basic objects of this book.

Terminal. This is the smallest class needed for running Mori’s program
starting with smooth varieties. For surfaces, terminal equals smooth. These sin-
gularities have been fully classified in dimension 3 but they are less understood
in dimensions > 4.

Canonical. These are the singularities that appear on the canonical models of
varieties of general type. The classification of canonical surface singularities by
Du Val in 1934 is the first appearance of any of these classes in the literature.
These singularities are reasonably well studied in dimension 3, less so in
dimensions > 4.

For many problems a modified version of Mori’s program is more appropri-
ate. Here one starts not with a variety but with a pair (X, D) consisting of a
smooth variety and a simple normal crossing divisor on it. These lead to the
“log” versions of the above notions.

Log terminal. This is the smallest class needed for running the minimal
model program starting with a simple normal crossing pair (X, D). There
are, unfortunately, many different flavors of log terminal; the above definition
describes “divisorial log terminal” singularities. From the point of view of
complex differential geometry, log terminal is characterized by finiteness of the
volume of the smooth locus X \ Sing X that is, for any top-degree holomorphic
form w, the integral [, A @ is finite.

Log canonical. These are the singularities that appear on the log canonical
models of pairs of log general type. Original interest in these singularities came
from the study of affine varieties since the log canonical model of a pair (X, D)
depends only on the open variety X \ D. One can frequently view log canonical
singularities as a limiting case of the log terminal ones, but they are technically



2 Introduction

much more complicated. They naturally appear in any attempt to use induction
on the dimension.

The relationship of these four classes to each other seems to undergo a
transition as we go from dimension 3 to higher dimensions. In dimension 3
we understand terminal singularities completely and each successive class is
understood less. In dimensions > 4, our knowledge about the first three classes
has been about the same for a long time while very little was known about the
log canonical case until recently.

Semi-log-canonical. These are the singularities that appear on the stable
degenerations of smooth varieties of general type. The same way as stable
degenerations of smooth curves are non-normal nodal curves, stable degen-
erations of higher dimensional smooth varieties also need not be normal. In
essence “semi-log canonical” is the straightforward non-normal version of
“log canonical,” but technically they seem substantially more complicated.
The main reason is that the minimal model program fails for varieties with
normal crossing singularities, hence many of the basic techniques are not
available.

The relationship between the study of these singularities and the development
of Mori’s program was rather symbiotic. Early work on the minimal models
of 3-folds relied very heavily on a detailed study of 3-dimensional terminal
and canonical singularities. Later developments went in the reverse direction.
Several basic results, for instance adjunction theory, were first derived as con-
sequences of the (then conjectural) minimal model program. When they were
later proved independently, they provided a powerful inductive tool for the
minimal model program.

Now we have relatively short direct proofs of the finite generation of the
canonical rings, but several of the applications to singularity theory depend
on more delicate properties of minimal models in the non-general-type case.
Conversely, recent work on the abundance conjecture relies on subtle properties
of semi-log canonical singularities. In writing the book, substantial effort went
into untangling these interwoven threads.

The basic definitions and key results of the minimal model program are
recalled in Chapter 1.

Canonical, terminal, log canonical and log terminal singularities are defined
and studied in Chapter 2. As much as possible, we develop the basic theory for
arbitrary schemes, rather than just for varieties over C.

Chapter 3 contains a series of examples and classification theorems that show
how complicated the various classes of singularities can be.

The technical core of the book is Chapter 4. We develop a theory of higher-
codimension Poincaré residue maps and apply it to a uniform treatment of
log canonical centers of arbitrary codimension. Key new innovations are the
sources and springs of log canonical centers, defined in Section 4.5.
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These results are applied to semi-log canonical singularities in Chapter 5.
The traditional methods deal successfully with the normalization of a semi-
log canonical singularity. Here we show how to descend information from the
normalization of the singularity to the singularity itself.

In Chapter 6 we show that semi-log canonical singularities are Du Bois; an
important property in many applications. The log canonical case was settled
earlier in Kollar and Kovacs (2010). With the basic properties of semi-log
canonical singularities established, the induction actually runs better in the
general setting.

Two properties of semi-log canonical singularities that are especially useful
in moduli questions are treated in Chapter 7.

Chapter 8 is a survey of the many results about canonical, terminal, log
canonical and log terminal singularities that we could not treat adequately.

Chapter 9 contains results on finite equivalence relations that were needed
in previous Chapters. Some of these are technical but they should be useful in
different contexts as well.

A series of auxiliary results are collected in Chapter 10.
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Preliminaries

We usually follow the definitions and notation of Hartshorne (1977) and Kollar
and Mori (1998). Those that may be less familiar or are used inconsistently in
the literature are recalled in Section 1.1.

The rest of the chapter is more advanced. We suggest skipping it at first
reading and then returning to these topics when they are used later.

The classical theory of minimal models is summarized in Section 1.2. Min-
imal and canonical models of pairs are treated in greater detail in Section 1.3.
Our basic reference is Kollar and Mori (1998), but several of the results that
we discuss were not yet available when Kollar and Mori (1998) appeared. In
Section 1.4 we collect various theorems that can be used to improve the singu-
larities of a variety while changing the global structure only mildly. Random
facts about some singularities are collected in Section 1.5.

Assumptions Throughout this book, all schemes are assumed noetherian
and separated. Further restrictions are noted at the beginning of every
chapter.

All the concepts discussed were originally developed for projective varieties
over C. We made a serious effort to develop everything for rather general
schemes. This has been fairly successful for the basic results in Chapter 2, but
most of the later theorems are known only in characteristic 0.

1.1 Notation and conventions

Notation 1.1 The singular locus of a scheme X is denoted by Sing X. It

is a closed, reduced subscheme if X is excellent. The open subscheme of

nonsingular points is usually denoted by X". For regular points we use X",
The reduced scheme associated to X is denoted by red X.
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Divisors and Q-divisors

Notation 1.2 Let X be a normal scheme. A Weil divisor, or simply divisor,
on X is a finite, formal, Z-linear combination D = Y. m; D; of irreducible and
reduced subschemes of codimension 1. The group of Weil divisors is denoted
by Weil(X) or by Div(X).

Given D and an irreducible divisor D;, let coeffp, D denote the coefficient
of D; in D. That is, one can write D = (coeffp, D) - D; + D’ where D; is not
a summand in D’. The support of D is the subscheme U; D; C X where the
union is over all those D; such that coeffp, D # 0.

A divisor D is called reduced if coeffp, D € {0, 1} for every D;. We some-
times identify a reduced divisor with its support. If D = ). a; D; (where the
D; are distinct, irreducible divisors) then red D := Zi:a, £0 D; denotes the
reduced divisor with the same support. One can usually identify red D and
Supp D.

Linear equivalence of divisors is denoted by Dy ~ D,.

For a Weil divisor D, O'x(D) is a rank 1 reflexive sheaf and D is a Cartier
divisor if and only if &x(D) is locally free. The correspondence D +— Ox(D)
is an isomorphism from the group CI(X) of Weil divisors modulo linear equiva-
lence to the group of rank 1 reflexive sheaves. (This group does not seem to have
a standard name but it can be identified with Pic(X \ Sing X).) In this group the
product of two reflexive sheaves L, L, is given by L;®L> := (L, ® Ly)**,
the double dual or reflexive hull of the usual tensor product. For powers we use
the notation L™l := (L®my**.

One can think of the Picard group Pic(X) as a subgroup of CI(X).

A Weil divisor D is Q-Cartier if and only if m D is Cartier for some m # 0.
Equivalently, if and only if &x(mD) = (€x(D))™ is locally free for some
m # 0.

A normal scheme is factorial if every Weil divisor is Cartier and Q-factorial
if every Weil divisor is Q-Cartier. See Boissiere et al. (2011) for some founda-
tional results.

Note further that if L is a reflexive sheaf and D = }_ a; D; a Weil divisor
then L(D) denotes the sheaf of rational sections of L with poles of multiplicity
at most a; along D;. It is thus the double dual of L ® €'x(D).

More generally, let X be a reduced, pure dimensional scheme that satis-
fies Serre’s condition S,. Let CI*(X) denote the abelian group generated by
the irreducible Weil divisors not contained in Sing X, modulo linear equiva-
lence. (Thus, if X is normal, then CI*(X) = CI(X).) As before, D — Ox(D)
is an isomorphism from CI*(X) to the group of rank 1 reflexive sheaves
that are locally free at all codimension 1 points of X. For more details,
see (5.6).
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Aside If X is not S,, then one should work with the group of rank 1 sheaves
that are S,. Thus @x (3 a; D;) should denote the sheaf of rational sections
of Oy with poles of multiplicity at most @; along D;. Unfortunately, this is
not consistent with the usual notation &'x(D) for a Cartier divisor D since
on a non-S; scheme a locally free sheaf is not S, hence we will avoid
using it.

Definition 1.3 (Q-Divisors) If in the definition of a Weil divisor Z,- m; D; we
allow m; € Q (resp.m; € R), we get the notion of a Q-divisor (resp. R-divisor).
We mostly work with Q-divisors. For singularity theory, (2.21) reduces every
question treated in this book from R-divisors to Q-divisors.

We say that a Q-divisor D is a boundary if 0 < coeff,, D < 1 for every D;
and a subboundary if coeff , D < 1 for every D;.

A Q-divisor D is Q-Cartier if m D is a Cartier divisor for some m # 0.

Note the difference between a Q-Cartier divisor and a Q-Cartier Q-divisor.

Since the use of (Q-divisors is rather pervasive in some parts of the book,
we sometimes call a divisor a Z-divisor to emphasize that its coefficients are
integers.

Two Q-divisors Dy, D, on X are Q-linearly equivalent if m D, and m D, are
linearly equivalent Z-divisors for some m # 0. This is denoted by Dy ~q D».

Let f: X — Y be a morphism. Two (Q-divisors Dy, D, on X are relatively
Q-linearly equivalent if there is a Q-Cartier Q-divisor B on Y such that D| ~q
D, + f*B. This is denoted by Dy ~q, s D,.

For a Q-divisor D = ). a; D; (where the D; are distinct irreducible divisors)
its round down is | D | := Zi la; | D; where |a| denotes the largest integer < a.
We will also use the notation D =: ) , @; D; and similarly for Dy, D
and so on.

ia;>

Definition 1.4 Let f: X — § be a proper morphism and D a Q-Cartier Q-
divisor on X. Let C C X be a closed 1-dimensional subscheme of a closed
fiber of f. Choose m > 0 such that m D is Cartier. Then

(D - C) := Ldeg (Ox(mD)|c)

m

is called the intersection number or degree of D on C.

We say that D is f-nef if (D - C) > 0 for every such curve C. If S is the
spectrum of a field, we just say that D is nef.

We say that D is f-semiample if there are proper morphisms 7: X — Y
and g: Y — S and a g-ample Q-divisor H on Y such that D ~g 7*H. Thus
f-semiample implies f-nef.

If S is a point, the difference between semiample and nef is usually minor,
but for dim S > 0 the distinction is frequently important; see Section 10.3.



