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Preface

A fundamental calculus course is a staple for students in Business, Economics, and the
Natural, Social, and Environmental Sciences, among others. Most topics within this book
parallel conventional texts, and they appear here directly, unimpeded by lengthy examples,
explanations, data, irrelevances, and redundancies. Examples are the primary means to
illustrate concepts and techniques as students readily respond to them. While there are
ample Exercises and Supplementary Exercises, distracting abundance is avoided. Arrow
symbols interspersed in the text, UP ( 1 ) and DOWN ( | ), are used to signal student tips,
insights, and general information much as an instructor might to students in class to help
their understanding. UP arrows modestly increase text depth while DOWN arrows expand
aid to students.

Students often question the importance and usefulness of calculus, and some find math
courses confusing and difficult. To address such issues, one goal of the text is for students
to understand that calculus techniques involve basic rules used in combinations to solve
complex problems. The challenge to students is to disassemble problems into manageable
components. For example, a derivative of [(f(x)g(x))/h(x)]". The text encourages students to
use power, quotient, and product rules for solutions. Another goal is to encourage students
to understand calculus as the mathematics of change. To help, text examples guide students
in modeling skills.

The elements of finite calculus lacking in most texts is a feature in this book, which
serves multiple purposes. First, it offers an easier introduction by focusing on “change”
and enables students to compare corresponding topics with differential calculus. Many may
argue that it is the more natural calculus for social and other sciences. Besides, and equally
important, finite calculus lends itself to modeling and spreadsheets. In Chapters 2 and 5,
finite calculus is applied to marginal economic analysis, finance, growth, and decay.

Each chapter begins with an outline of sections, main topics of discussion, and examples.
The outline displays topical chapter coverage and aids in finding items of particular interest.
The Historical Notes sketch some of the rich 4000-year history of mathematics and its
people.
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X PREFACE

Some students may skip Chapter 1, Linear Equations and Functions while others find
it a useful review.

In Chapter 2, The Derivative finite differences are introduced naturally in forming
derivatives and is a topic in its own right. Usually absent from applied calculus texts, finite
calculus emphasizes understanding calculus as the “mathematics of change” (not simply
rote techniques) and is an aid to popular spreadsheet modeling.

In Chapter 3, Using the Derivative students’ newly acquired knowledge of a derivative
appears in everyday contexts including marginal economic analysis. Early on, it shows
students an application of calculus.

Chapter 4, Exponential and Logarithmic Functions delineates their principles. This
chapter appears earlier than in other texts for two reasons. One, it allows for more complex
derivatives to be discussed in Chapter 5 to include exponentials and logarithms. Two, it
allows for the discussion on finite differences in Chapter 5 to be a lead in for integration in
Chapter 6, Integral Calculus.

Chapter 5, Techniques of Differentiation treats the derivatives of products and quo-
tients, maxima, and minima. Finite differences (or finite calculus) appear again in a brief
section of this chapter. The anti-differences introduced in Chapter 5 anticipate the basics of
integration in Chapter 6.

Chapters 7 and 8, Integration Techniques and Functions of Several Variables respec-
tively, typify most texts. An exception is our inclusion of partial fractions.

Chapter 9, Series and Summations includes important insight to applications.

Chapter 10, Applications to Probability links calculus and probability.

The table below suggests sample topic choices for a basic calculus course:

Traditional Enhanced Two-Semester
Chapter Course Course Course
1 Linear Equations and Functions Selections Selections Selections
2 The Derivative v v v
3 Using the Derivative v v v
4 Exponential and Logarithmic v v v
Functions
5 Differentiation Techniques Selections Selections v
6 Integral Calculus v v v/
7 Integration Techniques Selections Selections v
8 Functions of Several Variables Selections Selections v
9 Series and Summations Optional Selections v
10 Applications to Probability Optional Selections v
SUPPLEMENTS

A modestly priced Student Solutions Manual contains complete solutions.
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1.1 SOLVING LINEAR EQUATIONS

Mathematical descriptions, often as algebraic expressions, usually consist of alphanumeric
characters and special symbols.

1 The name “algebra™ has fascinating origins in early Arabic language (Historical Notes).

For example, physicists describe the distance, s, that an object falls under gravity in a
time, , by s = (1/2)gt>. Here, the letters s and 7 represent variables since their values may
change while, g, the acceleration of gravity, is considered as constant. While any letters can
represent variables, typically, later letters of the alphabet are customary. Use of x and y is
generic. Sometimes, it is convenient to use a letter that is descriptive of a variable, as ¢ for
time.

Earlier letters of the alphabet are customary for fixed values or constants. However,
exceptions are common. The equal sign, a special symbol, is used to form an equation.
An equation equates algebraic expressions. Numerical values for variables that preserve
equality are called solutions to the equations.

For example, 5x+ 1 =11 is an equation in a single variable, x. It is a condi-
tional equation since it is only true when x = 2. Equations that hold for all values
of the variable are called identities. For example, (x + 12 =x2+2x+1 is an iden-
tity. By solving an equation, values of the variables that satisfy the equation are
determined.

An equation in which only the first powers of variables appear is a linear equation.
Every linear equation in a single variable can be solved using some or all of these
properties:

Substitution — Substituting one expression for an equivalent one does not alter the orig-
inal equation. For example, 2(x — 3) + 3(x — 1) = 21 is equivalent to
2x—6+3x—3=2lor5x—9=21.

Addition — Adding (or subtracting) a quantity to each side of an equation leaves
it unchanged. For example, 5x — 9 = 21 is equivalent to 5x—9+9=214+9 or
5x = 30.

Multiplication — Multiplying (or dividing) each side of an equation by a non-zero quan-
tity leaves it unchanged. For example, 5x = 30 is equivalent to (5x)(1/5) = (30)(1/5)
orx =6.
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| Here are examples of linear equations: Sx —3 = 11, y = 3x + 5, 3x 4+ 5y + 62 = 4. They
are linear in one, two, or three variables, respectively. It is the unit exponent on the vari-

ables that identifies them as linear.

| By “solving an equation” we generally intend the numerical values of its variables.

To Solve Single Variable Linear Equations

1. Resolve fractions.
2. Remove grouping symbols.

3. Use addition (and/or subtraction) to have variable terms on one side of the
equation.

4. Divide the equation by the variable’s coefficient.
5. As a check, verify the solution in the original equation.

Example 1.1.1 Solving a Linear Equation

Solve 3x/2) — 8 = (2/3)(x — 2).
Solution:
To remove fractions, multiply both sides of the equation by 6, the least common denominator
of 2 and 3. (Step 1 above)
The revised equation becomes
9x — 48 =4(x — 2).
Next, remove grouping symbols (Step 2). That leaves
9x — 48 =4x - 8.
Now, subtract 4x and add 48 to both sides (Step 3). Now,

Ix —4x — 48+ 48 = 4x — 4x — 8+ 48 or 5x = 40.

Finally, divide both sides by the coefficient 5 (Step 4). One obtains x = 8.
The result, x = 8, is checked by substitution in the original equation (Step 5):

38)/2-8=(2/3)8-2)
4 =4 checks!

The solution x = 8 is correct!
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Equations often have more than one variable. To solve linear equations in several vari-
ables simply bring a variable of interest to one side. Proceed as for a single variable regard-
ing the other variables as constants for the moment.

| If yis the variable of interest in 3x + Sy + 6z = 2 , it can be written as y = (2 — 3x — 62)/5
regarding x and z as constants for now.

Example 1.1.2 Solving for y

Solve for y: 5x + 4y = 20.

Solution:
Move terms with y to one side of the equation and any remaining terms to the opposite side.
Here, 4y = 20 — 5x. Next, divide both sides by 4 to yieldy = 5 — (5 /4)x.

Example 1.1.3 Simple Interest

“Interest equals Principal times Rate times Time” expresses the well-known Simple Interest
Formula, I = PRT. Solve for the time, T.

Solution:
Grouping, | = (PR)T so PR becomes a coefficient of T. Dividing by PR gives T = 1/PR.

Mathematics is often called “the language of science” or “the universal language”.
To study phenomena or situations of interest, mathematical expressions and equations
are used to create mathematical models. Extracting information from the mathematical
model provides solutions and insights. Mathematical modeling ideas appear throughout
the text. These suggestions may aid your modeling skills.

To Solve Word Problems

. Read problems carefully.
. Identify the quantity of interest (and possibly useful formulas).
. A diagram may be helpful.

. Use symbols as variables and unknowns to translate words into an equation(s).
. Solve for the quantity of interest.

1

5.

3

4. Assign symbols to variables and other unknown quantities.

5

6

7. Check your solution and whether you have answered the proper question.
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Example 1.1.4 Investment

Ms. Brown invests $5000 at 6% annual interest. Model her resulting capital for one year.

Solution:
Here the principal (original investment) is $5000. The interest rate is 0.06 (expressed as a

decimal) and the time is 1 year.
Using the simple interest formula, I = PRT, Ms. Brown’s interest is

[ = ($5000)(0.06)(1) = $300.

After one year a model for her capital is P+ PRT = $5000 + $300 = $5300.

Example 1.1.5 Gasoline Prices

Recently East Coast regular grade gasoline was priced about $3.50 per gallon. West Coast
prices were about $0.50/gallon higher.

a) What was the average regular grade gasoline price on the East Coast for 10 gallons?
b) What was the average regular grade gasoline price on the West Coast for 15 gallons?

Solution:

a) On average, a model for the East Coast cost of ten gallons was (10)(3.50) = $35.00.
b) On average, a model for the West Coast of fifteen gallons was (15)($4.00) = $60.00.

¢ Consumption as a function of disposable income can be expressed by the linear rela-
tion C = mx + b, where C is consumption (in $); x, disposable income (in $); m, marginal
propensity to consume and b, a scaling constant. This consumption model arose in
Keynesian economic studies popular during The Great Depression of the 1930s.

EXERCISES 1.1

In Exercises 1-6 identify equations as an identity, a conditional equation, or a
contradiction.

l. 3x+1=4x-5 4. 4x+3x+2)=x+6
2.2+ D)=x+x+2 5. 4x+3)=2(2x+5)
3.5x+D+2x—-1)=7x+6 6. 3x+7=2x+4
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In Exercises 7—27 solve the equations.

1

8.

9.
10.
11.
12
I3
14.
15.
16.
1
18.

: x—3=17
3x+2=2x+7
2x =4x-10
x/3=10
4x—-5=6x—7
Sx+(1/3)=17
0.6x =30
Bx/5)-1=2-(1/5)x-5)

2/3=(4/5x—(1/3)
4x-3)=2(x—1)
Sx—4)=2x+3(x—7)
3x+5x—-2)=2(x+7)

19.
20.
21
22.
23.
24.

26,
27.

3s—4=2s+6
5z=-3)+3@z+1)=12
Tt+2=4r+11

(1/3)x+(1/2)x =5
A+ D) +2(6x—3)=T(x—1)

1/3=@3/5x—(1/2)
x+8 —9

2x—5

3)('7—1 :x_3

8 — {4[x — (Bx —4) — x] + 4}
=3(x+2)

In Exercises 28-35 solve for the indicated variable.

28.
29.
30.
31l
3.
33.
34.

35.

Solve: 5x — 2y + 18 = 0 for y.
Solve: 6x — 3y = 9 for x.
Solve: y = mx + b for x.

Solve: 3x 4+ Sy = 15 for y.

Solve: A = P + PRT for P.
Solve: V = LWH for W.
Solve: C = 2zr for r.
Solve: Z = . for x.

Exercises 36—45 feature mathematical models.

36.
37.

38.
39.

40.

The sum of three consecutive positive integers is 81. Determine the largest integer.
Sally purchased a used car for $1300 and paid $300 down. If she plans to pay the

balance in five equal monthly installments, what is the monthly payment?

A suit, marked down 20%, sold for $120. What was the original price?
If the marginal propensity to consume is m = .75 and consumption, C, is $11 when

disposable income is $2, develop the consumption function.

be housed?

A new addition to a fire station costs $100,000. The annual maintenance cost
increases by $2500 with each fire engine housed. If $115,000 has been allocated
for the addition and maintenance next year, how many additional fire engines can



41.

42.

43.

44,

45.

LINEAR EQUATIONS AND THEIR GRAPHS T

Lightning is seen before thunder is heard as the speed of light is much greater than
the speed of sound. The flash’s distance from an observer can be calculated from
the time between the flash and the sound of thunder.

The distance, d (in miles), from the storm can be modeled as d = 4.5¢ where time,
t, is in seconds.

a) If thunder is heard two seconds after lightning is seen, how far is the storm?

b) If a storm is 18 miles distant, how long before thunder is heard?

A worker has forty hours to produce two types of items, A and B. Each unit of A
takes three hours to produce and each item of B takes two hours. The worker made
eight items of B and with the remaining time produced items of A. How many of
item A were produced?

An employee’s Social Security Payroll Tax was 6.2% for the first $87,000 of earn-
ings and was matched by the employer. Develop a linear model for an employee’s
portion of the Social Security Tax.

An employee works 37.5 hours at a $10 hourly wage. If Federal tax deductions are
6.2% for Social Security, 1.45% for Medicare Part A, and 15% for Federal taxes,
what is the take-home pay?

The body surface area (BSA) and weight (Wt) in infants and children weighing
between 3 kg and 30 kg has been modeled by the linear relationship

BSA = 1321 4 0.3433Wt (where BSA is in square centimeters and weight in grams)
a) Determine the BSA for a child weighing 20 kg.

b) A child’s BSA is 10,320 cm?. Estimate its weight in kilograms.

Current, J.D.,“A Linear Equation for Estimating the Body Surface Area in Infants
and Children.”, The Internet Journal of Anesthesiology 1998:VoI2N2.

1.2 LINEAR EQUATIONS AND THEIR GRAPHS

Mathematical models express features of interest. In the managerial, social, and natural
sciences and engineering, linear equations often relate quantities of interest. Therefore, a
thorough understanding of linear equations is important.

The standard form of a linear equation is ax + by = ¢ where a, b, and c are real valued
constants. It is characterized by the first power of the exponents.

Standard Form of a Linear Equation

ax+by =c

a, b, c are real numbered constants; a and b, not both zero




