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CHARLES KITTEL has taught solid state physics at the University of
California at Berkeley since 1951, having previously been at the Bell
Laboratories. His undergraduate work in physics was done at M.I.T. and
at the Cavendish Laboratory of Cambridge University. His Ph.D. research
was in theoretical nuclear physics with Professor Gregory Breit at the
University of Wisconsin. He has been awarded three Guggenheim fellow-
ships, the Oliver Buckley Prize for Solid State Physics, and the Distin-
guished Teaching Award at Berkeley. He is a member of the National
Academy of Science and of the American Academy of Arts and Sciences.
The first edition of ISSP appeared in 1953 as the first textbook to integrate
the elementary parts of solid state physics for use by seniors and beginning
graduate students; now in the fifth edition, ISSP is one of the most widely
translated science textbooks. His recent research is in the field of electron-
hole condensation in semiconductors.




This is an elementary textbook on solid state physics and materials
science for senior undergraduate and beginning graduate students of
science and engineering. Solid state physics is largely concerned with the
remarkable properties exhibited by atoms and molecules because of their
regular arrangement in crystals. The properties include electron energy
bands and the elementary excitations of solids: phonons, plasmons, po-
larons, excitons, magnons, and polaritons. This book tells how they can be
understood in terms of simple models. Real solids may be more compli-
cated, but the power and utility of the elementary models cannot be
overestimated. 0

The first edition appeared in 1953, five years after the publication of
the discovery of the transistor. Today the solid state revolution is in full
development. Because of the profitable interplay of experiment and theory,
there is intellectual excitement in solid state physics—as witnessed by
the Nobel Prize awards during the past decade. Throughout the world,
more physicists are usefully employed in’solid state physics than in any
other field.

In this edition a new effort has been made to help undergraduates: the
first half of the book now provides students with an elementary one-
quarter or one-semester introduction to solid state physics through the
physics of semiconductors in Chapter 8. This part makes only modest
demands on the reader’s background in electricity and magnetism. A short
course might be completed by parts or all of Chapters 12 through 15. The
second half of the book applies the material in the beginning chapters to
well-defined areas. It contains matter that makes a frank appeal to electro-
magnetism at the intermediate level: plasmons, optical properties, super-
conductivity, ferroelectrics, and magnetism.

The discussion of superconductors is improved: simple estimates are
given for the upper and lower critical fields, the Josephson-Anderson deri-
vation of the London equation is adopted, and the lifetime of persistent
currents is calculated to exceed the age of the universe. The most common
and most serious defect in solid state textbooks is an inadequate derivation
of the properties of holes, as in semiconductors; in this edition their prop-
erties are clearly and extensively argued. Among the new topics in this
edition are the Peierls instability, magnetic bubbles, Gunn oscillators,
solar cells, Alfvén waves, electron-hole drops, and thermoelectric effects.
Many of the 54 tables have been revised; there are some 50 new drawings
and numerous new problems.

Some instructors prefer to start their lectures with the Drude model of
the free electron gas. To do this, start with the chapter sequence6,7, 2, 8, 9.
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Preface

The selection of subjects should not be seen as a measure of the impor-
tance of various areas, any more than the selection of references measures
individual contributions. A single textbook cannot represent the range of
current activity. Reviews in the Seitz-Turnbull-Ehrenreich and other
series may be consulted for subjects not treated here and for detailed
bibliographies. There are in the literature perhaps 20,000 articles of high
quality that could usefully be cited. I have tried to give a helpful, but
small, sample of those most accessible in English. The translations of this
book into French, German, Spanish, Italian, Japanese, Russian, Polish,
Roumanian, Hungarian, Chinese, and Arabic often give further references
in these languages; there is a good student’s workbook in Swedish.

Important equations are repeated in SI and CGS-Gaussian units, where
these differ. Exceptions to this rule are the figure captions, the chapter
summaries, and any long section of text where a single indicated substitu-
tion, as of 1 for ¢ or 1/4me, for 1, will translate from CGS to SI.

Tables are in conventional units. The contents pages of several chapters
discuss conventions that were adopted to make parallel usage simple and
natural. The symbol e denotes the charge on the proton and is positive. The
notation (18) refers to Equation 18 of the current chapter, but (3.18) refers
to Equation 18 of Chapter 3; figures are referred to in the same way. A
caret over a vector, as in k, denotes a unit vector. Problems of appreciable
length or difficulty are preceded by an asterisk; I like to assign them for
extra credit. For production reasons the format of the book has been
changed from recent editions. The present page is longer and the line is
longer. Appendices in the last edition have either been incorporated into
the chapters or, where rarely taught, they have been dropped.

The preparation of this edition was made possible by the cooperation of
many colleagues and friends. M. L. Cohen and L. M. Falicov kindly re-
viewed several new chapters. Among my new debts are those to: D. Gugan,
D. Penn, C. D. Jeffries, A. M. Portis, M. ]J. Buerger, Leo Brewer, F. L.
Richards, F. C. Brown, A. Maradudin, B. T. Matthias, R. Dalven, W. M.
Star, C. P. Slichter, J. A. Wilson, J. C. Hensel, and R. T. Schumacher. I am
again grateful to the more than 150 people who contributed to the earlier
editions. I thank Felix Cooper, who did the artwork, and Carol Tung for
the preparation of the manuscript. Richard Robinson and Frank Velek of
our Physics Library have been generous with their interest and their time.

C. Kittel

BERKELEY, CALIFORNIA

An instructor’s manual is available to instructors who have adopted the text for classroom
use. Requests may be directed to John Wiley & Sons, Inc., 605 Third Avenue, New York,
New York 10016.
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Xiv Some General References

formula indices to Chemical abstracts and the subject indices to Physics
abstracts and Solid state abstracts. Good bibliographies often accompany
the review articles in Reports on progress in physics, Critical reviews
in solid state sciences, Solid state physics, Springer tracts in modern
physics, Reviews of Modern Physics, Soviet Physics (Uspekhi), and
Advances in Physics. The Solid state physics literature guides (Plenum) are
valuable aids.
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Figure 1 Relation of the external form of crystals to the form of the ele-
mentary building blocks. The building blocks are identical in (a) and (b), but
different crystal faces are developed. (c) Cleaving a crystal of rocksalt.



Solid state physics is devoted largely to the study of crystals and elec-
trons in crystals. The study of solid state physics as an extension of atomic
physics began in the early years of this century following the discovery of
x-ray diffraction and the publication of a series of simple and successful
calculations and predictions of crystalline properties.

The regularity of the external form of crystals disposed early observers
to the belief that crystals are formed by the regular repetition of identical
building blocks (Fig. 1). When a crystal grows in a constant environment,
the shape remains unchanged during growth, as if identical building
blocks are added continuously. The building blocks are atoms or groups of
atoms: a crystal is a three-dimensional periodic array of atoms. This was
known in the 18th century when mineralogists discovered that the index
numbers of the directions of all faces of a crystal are exact integers. Haiiy'
showed that the arrangement of identical particles in a three-dimensional
periodic array could account for a law of rational or integral indices.

On June 8, 1912, a paper entitled “Interference effects with Rontgen
rays” was presented to the Bavarian Academy of Sciences in Munich. In
the first part of the paper, Laue developed an elementary theory of diffrac-
tion of x-rays by a periodic array of atoms. In the second part, Friedrich
and Knipping reported the first experimental observations of x-ray diffrac-
tion by crystals. The work proved decisively that crystals are composed of
a periodic array of atoms? and marked the beginning of the field of solid
state physics. With an established atomic model of a crystal, physicists
could think much further.

'R. ]J. Haiiy, Essai d’une théorie sur la structure des cristaux, Paris, 1784; Traité de cris-
tallographie, Paris, 1801.

*For personal accounts of the early years of x-ray diffraction studies of crystals, see P. P.
Ewald, ed., Fifty years of x-ray diffraction, A. Oosthoek’s Uitgeversmij., Utrecht, 1962.
Shrewd guesses about the structures of a number of crystals had been made much earlier
by W. Barlow, Nature 29, 186, 205, 404 (1883); he argued from considerations of sym-
metry and packing.
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PERIODIC ARRAYS OF ATOMS

An ideal crystal is constructed by the infinite repetition in space of
identical structural units. In the simplest crystals such as copper, silver,
iron, aluminum, and the alkali metals, the structural unit is a single atom.
Often the structural unit is several atoms or molecules, up to perhaps 100
in inorganic crystals® and 10,000 in protein crystals. The structure of all
crystals is described in terms of a lattice with a group of atoms attached to
each lattice point. The group is called the basis; it is repeated in space to
form the crystal structure. We now make these definitions more precise.

Lattice Translation Vectors and Lattices

An ideal crystal is composed of atoms arranged on a lattice defined by
three fundamental translation vectors a, b, ¢ such that the atomic arrange-
ment looks the same in every respect when viewed from any point r as
when viewed from the point

r=r+ua+vb+wc, (1)

where u, v, w are arbitrary integers. The set of points r’ specified by (1)
for all values of the integers u, v, w defines a lattice. A lattice is a regular
periodic arrangement of points in space. A lattice is a mathematical ab-
straction: the crystal structure is formed only when a basis of atoms is at-
tached identically to each lattice point. The logical relation is

lattice + basis = crystal structure .

The lattice and the translation vectors a, b, ¢ are said to be primitive if
any two points r, r’ from which the atomic arrangement looks the same
always satisty (1) with a suitable choice of the integers u, v, w. This defi-
nition of the primitive translation vectors guarantees that there is no cell
of smaller volume that could serve as a building block for the structure.
We often use primitive translation vectors to define the crystal axes,
although nonprimitive crystal axes may be used when they are simpler.
The crystal axes a, b, ¢ form three adjacent edges of a parallelepided. If
there are lattice points only at the corners of the parallelepiped, then it is
a primitive parallelepiped. A lattice translation operation is defined as the
displacement of a crystal parallel to itself by a crystal translation vector

T = ua + vb + wc . (2)

Any two lattice points are connected by a vector of this form.

3The intermetallic compound NaCd, has a cubic cell of 1192 atoms as its smallest struc-
tural unit; S. Samson, Nature 195, 259 (1962).



1 Crystal Structure 5

Figure 2 Portion of a crystal of an imaginary protein molecule, in a two-
dimensional world. (We picked a protein molecule because it is not likely to
have a special symmetry of its own.) The atomic arrangement in the crystal
looks exactly the same to an observer at r’ as to an observer at r, provided
that the vector T which connects ' and r may be expressed as an integral
multiple of the vectors a and b. In this illustration, T = —a + 3b. The vectors
a and b are primitive translation vectors of the two-dimensional lattice.
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Figure 3 Similar to Fig. 2, but with protein molecules associated in pairs.
The crystal translation vectors are a and b. A rotation of 7 radians about any
Foint marked X will carry the crystal into itself. This occurs also for equiva-

ent points in other cells, but we have marked the points X only within one
cell. ;
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Symmetry Operations

In describing a crystal structure, there are three important questions to
answer: What is the lattice? What crystal axes a, b, ¢ do we wish to use to
describe the lattice? What is the basis? More than one lattice is always
possible for a given structure and more than one set of crystal axes is
always possible for a given lattice. We cannot pick the basis until we have
selected the lattice and the axes we wish to use. Everything (such as the



