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Preface

The first chapter presents a personal view on the development of identification
theory in the control community, starting from the year 1965. We show how two
laodmark papers and gave birth to two main streams of research that have domi-
nated the development of system identification over the last fourty years. The Ho-
Kalmao paper gave a first solution to state-space realization theory, which led
to stochastic realization, aod much later to subspace identification. In the second
chapter we discussed about a variety of techniques exist for interbody fusion of
the lumbar spine. Transforaminal Lumbar Interbody Fusion (TLIF) demonstrates
advantages over the anterior and bilateral posterior procedures because it requires
only unilateral access to the disc via a far-lateral approach; thereby minimizing the
risk of vascular and neurologic complications. Minimally invasive techniques for
TLIF (MIS TLIF) have been introduced with the aim of smaller wounds, less tissue
trauma, and faster recovery. However, during MIS TLIF, access to the disc and
by consequence, the extension of the discectomy, can be reduced. The Mechanical
control systems have become a part of our everyday life. Systems such as automo-
biles, robot manipulators, mobile robots, satellites, buildings with active vibration
controllers and air conditioning systems, make life easier and safer, as well as help
us explore the world we live in and exploit it’s available resources. In this chapter,
we examine a specific example of a mechanical control system; the Autonomous
Underwater Vehicle (AUV). Our contribution to the advancement of AUV research
is in the area of guidance and control. We present innovative techniques to design
and implement control strategies that consider the optimization of time and/or
energy consumption. In the forth chapter we discussed about automation is “the
application of machines to tasks once performed by human beings, or increasing-
ly, to tasks that would otherwise be impossible”, Encyclopaedia Britannica. The
term automation itself was coined in the 1940s at the Ford Motor Company. The
idea of automating processes and systems started many years earlier than this as
part of the agricultural and industrial revolutions of the late 18th and early 19th
centuries. There is little disputing that England was a major contributor to the In-
dustrial Revolution and indeed was the birth place of some prominent inventors,
for example. In the fifth chapter we discussed about representative research re-
ported in journal articles in the field of structural system identification published
in journals since 1995 is presented. The chapter is divided into five sections based
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on the general approach used: conventional model-based, biologically-inspired,
signal processing-based, chaos theory, and multi-paradigm approaches. Most of
the published papers deal with small and academic problems. System identifica-
tion of large real-life structures with nonlinear behavior subjected to unknown
dynamic loading such as strong ground motions is challenging. It is believed a
multi-paradigm approach is the most effective strategy for system identification
of large structures subjected to dynamic loading. In the sixth chapter we discussed
about a trend to study linear system identification with high order finite impulse
response (FIR) models using the regularized least-squares approach. One key of
this approach is to solve the hyper-parameter estimation problem that is usually
non-convex. Our goal here is to investigate implementation of algorithms for solv-
ing the hyper-parameter estimation problem that can deal with both large data
sets and possibly ill-conditioned computations. In particular, a QR factorization
based matrix-inversion-free algorithm is proposed to evaluate the cost function in
an efficient and accurate way. It is also shown that the gradient and Hessian of the
cost function can be computed based on the same QR factorization. At first, the
core ideology, advantage and principle of Software Testing Automation Frame-
work (STAF) are presented in this paper. Several automated testing frameworks
are summarized and analyzed. In addition, date driven automation test frame-
work is given more attention. Test script is the important composing part of soft-
ware test automation. Then the chapter seven introduces several technologies of
script along with their characteristics. Automatic inspection is common in mass
production inspections where robot manipulators are chosen to perform visual
inspection to avoid inconsistency in manual inspection. The purpose of this work
is to estimate the optimum workspace where a robot manipulator could perform
a visual inspection tasks onto a work piece where a camera is attached to the end
effector. While maneuvering through the programmed path, the robot will stop
at a predefined point so that an image could be captured where the ideal param-
eter for the coefficient correlation (CC) template matching was computed. This
we discussed in the eighth chapter. One of the most important problems in many
industrial applications is the redundancy optimization problem. This latter is well
known combinatorial optimization problem where the design goal is achieved by
discrete choices made from elements available on the market. The natural objec-
tive function is to find the minimal cost configuration of a series-parallel system
under availability constraints. This we discussed in the ninth chapter. In the tenth
chapter, joint identification for structural systems, characterized by severe non-
linearities (softening) in the constitutive model, is pursued via the Sigma-Point
Kalman Filter (S-PKF) and the Particle Filter (PF). Since a formal proof of the ef-
fects of softening in a stochastic structural system on the accuracy and stability of
the filters is still missing, we comparatively assess the performances of S-PKF and
PF. We show that the PF displays a higher convergence rate towards steady-state
model calibrations and the S-PKEF is less sensitive to the measurement noise. Both
S-PKF and PF are robust, even if they tend to get unstable when a structural failure
is triggered.

Editor

vi



Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Contents

Profate...iisicsicississisissssinsssusuisssiminsassissmmmitassuiasansaasnnasannnnansssnssassassansnnsannss \"

System Identification without Lennart Ljung: what
it P el Y T O ——— 1

Michel Gevers

Effects of an Optimized Automated Disc Preparation on
Clinical and Radiological Outcome of Minimally Invasive
Transforaminal Interbody Fusion Procedure ...........ccccoecccmmennrnsssiennnns 33

Alphonse Lubeneu-,Jean.Ciaude CadJot Laurence
Abelooa,Landry Drogba,. Olivier De Witte

Optimization Problems For Controlled Mechanical Systems:
Bridging The Gap Between Theory And Application........................... 49

M. Chyba, T. Haberkorn, R.N. Smith

Power System and Substation Automation .........ccccccreciiiiciicccceninnnnes 79
Edward Chikuni

System lIdentification in Structural Engineering ......cccccceeerieeeeeeenne. 113
G.F. Sirca Jr.,H. Adeli

Implementation of Algorithms for Tuning Parameters in

Regularized Least Squares Problems in System Identification....... 145
Tianshi Chen and Lennart Ljung

Automated Testing Framework for ODBC Driver......c.ccccceeeeeemeeneene. 169
Dan Ye
Planning for Optimal Robot Trajectory for Visual Inspection .......... 201

Ahmad Yusairi Bani Hashim, Nur Sufiah Akmala Ramdan,
Radin Puteri Hamizah Radin Monawir, Mohd Nazrin Muhammad



Chapter 9

Chapter 10

Optimal Allocation of Reliability in Series Parallel
Production SYStemM -cicsssusssssssussssussesssssessansssanssnnnssnnnnsnsnansassassssadssasadsss 217

Rami Abdelkader, Zeblah Abdelkader, Rahli Mustapha and Massim
Yamani

Stochastic System Identification Via Particle And
Sigma-Point Kalman Filtering ......cceeevimmemimreeeeccininneseneeseeeecninn s 239

S. Eftekhar Azam, M. Bagherinia

CRRALIONS ..issaisiissssissssisissirsssiasnvinsassmsisy eyt s assam s as s sasnviss 273

viii



Chapter 1

SYSTEM IDENTIFICATION
WITHOUT LENNART LJUNG:
WHAT WOULD HAVE BEEN
DIFFERENT?

Michel Gevers

Department of Mathematical Engineering , Université Catholique de Louvain

ABSTRACT

This chapter presents a personal view on the development of
identification theory in the control community, starting from the
year 1965. We show how two laodmark papers, (Ho and Kalmao,
1965) aod (Astrom aod Bohlin, 1965), gave birth to two main
streams of research that have dominated the development of system
identification over the last fourty years. The Ho-Kalmao paper
gave a first solution to state-space realization theory, which led to
stochastic realization, aod much later to subspace identification. The
Astrom-Bohlin paper laid the foundations for the highly successful
Prediction Error methods based on parametric input-output models.
The chapter highlights the key inlluence of Lennart Ljung on the
development of Prediction Error Identification; it shows how his
seminal contributions have profoundly chaoged the community’s
view on identification from a search for the elusive “true system” to
a goaloriented design problem.

INTRODUCTION

The development of identification theory in the control literature
followed on the heels of the development of model-based control
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design around 1960. Up until the late 1950’s, much of control design
relied on Bode, Nyquist and Nichols charts, or on step response
aoalyses. These techniques were limited to control design for
single-input single-output (SISO) systems. Around 1960, Kalmao
introduced the state-space representation aod laid the foundations
for state-space based optimal filtering aod optimal control theory,
with Linear Quadratic (LQ) optimal control as a cornerstone for
model-based control design.

The availability of these model-based control design techniques
put pressure on the scientific community to extend the fields
of application of “modern” control design beyond the realm of
mechanical, electrical aod aerospace applications, for which reliable
models were easily available. Thus the need arose to develop data-
based techniques that would allow one to develop dynamical models
for such diverse fields as process control, enviromnental systems,
biological aod biomedical systems, traosportation systems, etc.

Much of the early work on identification was developed by the
statistics, econometrics and time series communities. Even though
the statistical theory of parameter estimstion has its roots in the work
of Gauss (1809) and Fisher (1912), most of the theory of stationary
stochastic processes was developed during the period 1920 to 1970.
We shall not describe this work here, because we want to focus on
the engineering views and developments of system identification.
An excellent review of the history of system identification and time
series analysis in the statistics community can be found in Deistler

(2002).

Although a lot of results had already been established in the
statistics and econometrics literature, one can view 1965 as the
birthyear for identification theory in the control community, with
the publication of two seminal papers, Ho and Kalman (1965) and
Astrom and Bohliu (1965). These two papers paved the way for the
development of the two mainstream identification techniques that
still dominate the field today: subspace identification and prediction
error identification.

The former is based on projection techniques in Euclidean space,
the latter is based on the minimization of a parameter dependent
criterion.
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The Ho-Kalman paper provided the first solution to the
determination of a minimal state-space representation from impulse
response data. The solution of this deterministic realization problem
was later extended by Akaike (1974) and others to stochastic
realization, where a Markovian model is obtained for a purely
random process on the basis of covariance data. 1bis technology,
based on canonical correlation analysis, was extended in the early
nineties to processes that also contain a measurable (control) input,
and was then rebaptized as subspace state-space identification.

The Astrom-Bohliu paper introduced into the control community
the Maximum Likelihood framework that had been developed by
time series analysts for the estimation of the parameters of difference
equation models. These were koown in the statistical literature by
such esoteric names as ARMA (AutoRegressive Moving Average) or
ARMAX model (AutoRegressive Moving Average with eXogeneous
inputs). These models, and the Maximum Likelihood framework,
were there to stay, since they gave rise to the immensely successful
Prediction Error Identification framework.

In 1970, Box and Jenkins published their book “Time series
analysis, forecasting and control”, Box and Jenkins (1970), which
gave a major impetus to applications of identification. Indeed, the
book gave a rather complete recipe for identification, all the way
from initial data analysis to the estimation of a model.

In the spirit of the time series analysis methods of the time, it relied
on correlation analysis for the determination of model structure. For
about 15 years, it remained the major high quality reference book on
system identification. Other important references of the time were
the survey paper Astrom and Eykhoff (1971) and the special issue on
system identification and time series analysis published by the IEEE
Transactiona on Automatic Control in December 1974. The Astriim
and Eykhoff survey was to be used by many young researchers of the
time as a stepping stone for future work. It explained the state of the
art as much as it displayed some of the important open questions of
the time. One of these was the identification of closed-loop systems,
for which the Hankel-based projection methods (based on cross-
correlation information) had been shown to fail.

From about the mid-seventies, the Prediction Error (PE)
framework completely dominated identification theory and,
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perhaps more importantly, identification applications. Just about all
of the activity at that time was focused on the search for the “true
system”, i.e. it dealt with questions of identifiability, convergence to
the “true parameters”, and asymptotic normality of the estimated
parameters. Much of that activity dealt with identifiability problems
for multivariable systems and for closed-loop systems.

Around 1976 the first attempts were made to view system
identification as an approximation problem, in which one searches
for the best possible approximation of the “true system” within
some model class: Ljung (1976); Anderson eta!. (1978); Ljung and
Caines (1979). The prevailing view changed consequently from
a search for the “true system” to a search for and characterization
of the “best approximation”. Hence, the characterization of the
model errors (bias error and variance error) became the focal point
of research. For control engineers, the object of primary interest is
the model, in particular the transfer function model, rather than the
parameters which are just a vehicle for the description of this model.
As it turns out, the research on bias and variance error moved
remarkably swiftly from the characterization of parameter errors to
that of transfer function errors, thanks to some remarkable analysis
of Ljung based on the idea of lening the model order go to infinity:
Ljung (1985); Wahlberg and Ljung (1986).

The work on bias and variance analysis of identified models
of the eighties then led, almost natorally, to a new perspective in
which identification became viewed as a “design problem”. With
an understanding of the effect of the experimental conditions, the
choice of model structure, and the choice of criterion on the quality
of the identified model, one can tune these design variables towards
the objective for which the model is being identified: Gevers and
Ljung (1986).

The book “System identification: Theory for the user”, Ljung
(1987), has had a profound impact on the engineering community
of system identifiers. It squarely put forward the view of system
identification as a design problem, in which the model use plays a
central role. This viewpoint clearly distingnishes the field from the
statisticalliteratore on system identification and time series analysis,
where the prevailing view is that the model must “explain” the data
as best as possible.
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The observation that the model quality can be tuned, through the
choice of appropriate design variables, towards the eventual objective
for which the model is being built opened the way to a flood of new
activity that took place in the nineties and continues up to this dsy.
The major application of this new paradigm is the situation where a
model is built with the view of designing a model-based controller.
Thus, identification for control has blossomed, since around 1990.
Because that topic embraces many aspects of identification and
robust control theory, it has also opened or reopened new research
interestin areas such as experiment design, closed-loop identification,
frequency domain identification, uncertainty estimation, and data-
based robust control analysis and design.

The present chapter attempts to exhibit both the continuity
and the motivation for the developments that took place in system
identification in the last fourty years, and also the significant new
departures and insights that came as the result of some important
breakthroughs. In doing so, this chapter will show how Leunart
Ljung was responsible for several of these breakthroughs.

THE MILESTONE PAPERS

Deterministic realization theory

In 1965, Ho and Kalman (1965) provided a first solution to a
challenging system theoretical problem that became known as the
state-space realization problem. It can be stated as follows.

Construct a minimal state-space realization

Typ1 — Az + Bug
Ve = Cn

for an input-output model described by its impulse response matrices
(also called

Markov parameters) Hx € RE*™
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=+
U = Z Hyug .
k=1

The problem is thus to replace the infinite description

H(z)= ib’kz_k

k=1
by a finite description with A E IRnxn,B E Rnxm,c E Rpxn, such that
H(z) = C(zI - A)"'B

with dim( A) minimal. This problem can be split up into two parts:
(i) find the McMillan degree of H(z), which is then the minimal
dimension of A; (ii) compute the matrices A, B, C. The key tool for the
solution of this problem is the Hankel matrix, and its factorization
into the product of an infinite observability matrix times an infinite
controllability matrix:

H, Hy Hy H, ... o
H, Hy He Hs ... CA ,
H=| H, H, Hy Hs ...|=| ca2 |[B AB A*B ..]

If the McMillan degree of H ( z) is 1, then
l.rank H=n

2. 3AER™", B R™™, C € RP*" such that H; = CA*1B.

It took years of research to go from the theoretical results described
in Ho and Kalman (1965) to a numerically reliable reali2ation
algorithm. However, all the key insights were present in the 1965
paper, and they were to bave a profound impact on linear system
theory, and on realization and identification theory.

THE MAXIMUM LIKELIHOOD FRAMEWORK

-In complete contrast to the state-space formulation of Ho and
Kalman, the landmark paper Astrom and Bohlin (1965) introduced
the Maximum Likelihood method for estimating the parameters of
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input-output models in ARMAX form:
Az Ny = Bz Nue + AC(z7 Ve,

where {e,} is a sequence of independent identically distributed Nor-
mal (0, 1) random varisbles. The Maximum Likelihood (ML) method
was well known and bad been widely studied in mathematical sta-
tistics and time series analysis. However, what is remarkable about
the Astrom-Bohlin paper is that the authors not only gave a complete
algorithntic derivation of the ML identification method for ARMAX
models, but also presented all analysis results that were available at
that time, such as the consistency, asymptotic efficiency and asymp-
totic normality of the parameter estimates, the persistence of excita-
tion conditions on the input signal in connection with the order of
the model, the model order validation on the basis of the whiteness
of the residuals, etc.

The concepts and nolations introduced by Astrom and Bohlin
in 1965 have been with us for almost 40 years now. Indeed, the
following household nolations of the identification community can
all be found in this ntilestone paper:

C{z Ve = Az Ve — Bz VDue

e the residuals
V() =43L, €
e the cost criterion & it

_ = arg min V(#)
* the parameter estimate
3 =2Lv().
e the white noise variance estimate
The publication of Ast:rom and Boblin (1965) gave rise to a
flurry of activity in parametric identification. It also established the
basis for the adoption of the Prediction Error framework. The step
from Maximum Likelihood to Prediction Error essentially consists
of observing that, under an assumption of white Gaussian noise in
the ARMAX model, the maximization of the likelihood function of
the observations is equivalent to the minimization of the sum of the
prediction errors. The Prediction Error framework then consists of
adopting the mjnjmjzati. on of a norm of the prediction errors as a
reasonable criterion for parameter estimation, even in the absence
of any koown probability distribution for the observations. Such
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suggestion had already been made by Mr. Gauss himself, Gauss
(1809), as observed in the fascinating paper Astrom (1980).

FROM DETERMINISTIC TO STOCHASTIC REALIZA-
TION

The combination of the deterministic reali2ation theory based on the
factorization of the Hankel matrix, and of the theory of Markovian
and inoovations representations gave rise to the stochastic theory
of minimal realizations. The stochastic realization problem can be
stated as follows.

Given the covariance sequence {Rk, k =1, 2, ... , 0o} of a zero-mean
stochastic
Ri = E{uy ;)

process {y,}, where Lfind a minimal Markovian

representation
for the process {Y, }, of the form

P Az, | Gw
Tt+1 .ﬁft‘ 'y (1)
Y = Cxy + vy

( i )

(3] “ . ¥ o .
Where " 7 is a zero-mean white noise sequence with covariance
matrix

T ! wy Q5
W =g {( v: ) ( v, ) } ( T R )

This problem amounts to finding state-space matrices {A, G, C} with n
~ dim( A) minimal. and the elements Q, S, R of the covariance matrix W
such that the covariance of the output of ( 1) is exactly R,.

Observe that the covariance of the output of the Markovian

representation (1) is given by R,, ~ CA* N with N = AnC" + GS for k >
12 E{z:z]}.

0,and R, = CrC" + R, where i is the state covariance: {wezy ) .

The stochastic realization problem was studied very intensively

during the early seventies in connection with innovations theory

and spectral factorization theory: Akaike (1974); Gevers and Kailath



