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Preface

Optoelectronics is a field of science which studies about concepts and applications of electronic devices that produce
light and are used in the detection of light and for controlling light. It wouldn’t be wrong to say that this subject
is a sub-field of photonic sciences. In this context, it is pertinent to state that light includes radiations like gamma
rays, X-rays, UV rays, infrared radiations, and visible lights that are VIBGYOR. Devices which are optoelectronic
in nature are basically electrical to optical transducers and vice-versa. Also included in Optoelectronics are the
instruments which use such devices in their operational procedures. Also referred to as electro-optics, this field of
study is based on quantum mechanical study of light and its effects on electronic materials such as semiconductors.
Important applications of optoelectronics include Optocoupler and Optical fibre communications among numerous
others.

A good base in physics is crucial for developing an understanding of Optoelectronics. This book elucidates
the fundamentals of light modulation, essential concepts of optics and solid state physics. Non communication
applications of Optoelectronics have also been discussed. From basic to advanced concepts, most aspects of
Optoelectronics have been covered in this book.

Instead of organizing the book into a pre-formatted table of contents with chapters, sections and then asking the
authors to submit their respective chapters based on this frame, the authors were encouraged by the publisher to
submit their chapters based on their area of expertise. I was then commissioned to examine the reading material
and put it together as a book. I'd like to thank all the renowned scientists, who graciously agreed to share their
researches with us. Lastly, this project wouldn't have been possible without the editorial team at the publishing
house, who provided us with technical assistance at each and every step.

Editor
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Nonlinear Scattering by Anisotropic Dielectric

Periodic Structures
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The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined.
The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity
of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the
anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency
conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures.

1. Introduction

A new generation of artificial electromagnetic materials has
opened up new opportunities for engineering the media with
the specified properties. The latest advancements in this field
have prompted a surge of research in the new phenomenol-
ogy, which could extend a range of functional capabilities
and enable the development of innovative devices in the
millimeter, terahertz (THz), and optical ranges.

Frequency conversion in dielectrics with nonlinearities
of the second and third order has been investigated in
optics, particularly, in the context of the second (SHG) and
third (THG) harmonic generation. The recent studies have
indicated that nonlinear photonic crystals (PhCs) and meta-
materials (MMs) have significant potential for enhancement
of the nonlinear activity associated with the mechanisms
of field confinement, dispersion management and resonant
intensification of the interacting waves. For example, it
has been demonstrated in [1-5] that the PhCs dispersion
can be tailored to facilitate the phase synchronism (The
phase synchronism between pump wave and its harmonic
is a prerequisite for efficient frequency conversion.) between
the second harmonic and the pump wave of fundamental

frequency. The harmonic generation efficiency can be further
increased when the pump wave frequencies are close to the
PhC band edges [6—12] where the higher density of states
provides favourable phase-matching conditions. The SHG
efficiency also grows with the PhC thickness or the number
of stacked layers [5].

Combinatorial frequency generation by mixing pump
waves of two different frequencies provides alternative means
for frequency conversion. The efficiency of mixing process
can be dramatically increased in the layered structures,
for example, at the higher order Wolf-Bragg resonances of
the combinatorial frequencies generated in the anisotropic
nonlinear dielectric slabs. As shown in [13], at the specific
thickness of the layers illuminated by the plane waves of two
tones, the mixing products reach their extremes and exhibit
either giant growth of the peak intensity or full suppression.
The global maxima and nulls at Wolf-Bragg resonances in the
layer are achieved only at the particular combinations of the
two frequencies w,; of pump waves and the layer parameters
and anisotropy.

The aim of this paper is to explore the mechanisms of the
combinatorial frequency generation in the PhC composed
of a periodic stack of binary anisotropic nonlinear dielectric
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FiGURE 1: Geometry of the problem.

layers illuminated by two-tone pump waves that allows us to
combine the effects of the resonance mixing with the disper-
sion control provided by the structure periodicity. Here the
properties of the combinatorial frequencies generated by the
nonlinear anisotropic dielectric PhC illuminated by plane
waves of two tones are investigated. A generic approach,
based on the transfer matrix method (TMM) [14], has been
devised here to take into account nonlinear polarization
of the constituent anisotropic layers and analyse frequency
mixing of the two-tone plane waves obliquely incident
on the PhC. The problem statement and the solution of
the respective boundary value problem obtained in the
three-wave approximation [15] are outlined in Section 2.
The results of the numerical analysis and the properties
of TM waves of combinatorial frequencies scattered by the
nonlinear PhC are discussed in Section 3 and the main
features of the three-wave mixing products generated by the
anisotropic nonlinear PhCs are summarised in Conclusions.

2. Nonlinear Scattering in Three-Wave
Mixing Process

Wave propagation and scattering in linear stratified media
are usually modelled by TMM, which sequentially relates the
fields at the layer interfaces, see, for example, [14, 16]. The
TMM approach has also been applied to the study of optical
harmonic generation and frequency mixing in 1D nonlinear-
layered structures at normal incidence of the pump waves
[17-20]. The nondepleted pump wave approximation has
been usually employed taking into account multiple reflec-
tions from the layer interfaces and interference between
all propagating waves, including the forward and backward
propagating waves. A relatively simple approach based upon
the TMM generalisation to a multiwavelength case has been
proposed in [19] where interaction between the different

Essential Topics in Optoelectronics

frequencies was described by the “effective” refractive index
characteristic for each optical wave. The latter technique
allows simulations of multiple optical wave interactions in
the homogenised metamaterials as well as in PhCs.

In order to examine the three-wave mixing process in the
1D anisotropic PhC, it is necessary to generalise the TMM-
based analysis for the case of two pump waves, incident at
arbitrary angles. To elucidate the main features of the devel-
oped approach, we consider here a canonical PhC structure
with the cross-section shown in Figure 1. It is composed
of the periodic binary dielectric layers of thicknesses d,
and d, and infinite extent in the x and y directions. The
total thickness of the periodic stack is L = N - (d; + da),
where N is the number of periods (unit cells). The PhC is
surrounded by the linear homogeneous medium with the
dielectric permittivity ¢, at z < 0 and z = L. It is illuminated
by two plane waves of frequencies w; and w; incident at
angles ©;; and @, respectively, as shown in Figure 1.

Each layer has 6 mm class of anisotropy and is described
by the linear dielectric permittivity tensor € = (&xx, Exx» £22)
and the second-order nonlinear susceptibility tensor ¥:

0 0 0 0 yxxz O
2= 0 0 0 xe 0 0] 1)
Xexx Xexx Xezz O 0 0

Owing to the structure uniformity in the x0y plane and
symmetry of the tensors € and ¥, we can assume without
loss of generality that d/dy = 0. In this case, Maxwell’s
equations for TE and TM polarised waves are separated and
can be treated independently. Only TM waves are considered
in the rest of the paper (the analysis of TE waves is similar
and somewhat simpler being unaffected by anisotropy of
X defined in (1)). The electric E,, and magnetic H, field
components of TM waves in each layer satisfy the following
system of nonlinear equations:

aExj B aEz] & laH},}

0z 0x ¢ ot ’
aHy,- Exxj E)Exj 4 0
et e ot = e Moy (BeBe)

CT _C-T - ) [szxjgai (Eijxj) +Xzzzj%(Eszzj)] >

(2)

where j = 1,2 denotes the respective constituent nonlinear
layer in the binary unit cell, c is the speed of light.

In the approximation of weak nonlinearity, the scattering
characteristics of the TM waves can be obtained separately
at each frequency by the harmonic balance method. Thus at
the combinatorial frequency w3 = w; + w;, the system of
nonlinear equations (2) can be reduced to inhomogeneous
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Helmbholtz equation for Hy; in each nonlinear anisotropic
dielectric layer

azH}'f(w3) + K2 - _’_(,3_3
E”jazz 9

)Hyj(ws)

€2z j

0 2xx
=47‘[k3[ ax(x ]Ex]((l)I)Exj(w2)

Al =—=E;j(w )Ezj(wz))
€2zj

Xxxz_; 0
&xxj 0Z

(Exj(wl)EZj(wz) + Ex_)(a’Z)Ez;(wl ))]
(3)

where ky = wp/c,p = 1,2,3 and ke = k3./€;5in @3. Since
ky3 must obey the requirement of the waveform invariance
along the layer interfaces, the phase synchronism condition
in the three-wave mixing process [15] is enforced here in the
following form:

kx3 = kxl + kxz, (4)

where ki = ki2,/&sin®;,;. In order to make the
solution procedure more transparent, we assume here that
both incident pump waves of frequencies w,; have the same
amplitudes equal to unity. Generalisation to the case of
unequal pump wave amplitudes is straightforward but the
resulting expressions are more cumbersome.

The full solution of inhomogeneous equation (3) is
composed of the partial and general solutions which can be
represented in the form

L0) IE) T
H:(,?)(wg,x, 2) = (A;-"'e'k‘ﬂ!z +A} e ket 4 D{'}'e‘kl“’

e + 2 -— i) 2 - ity o
+D5']‘-”e i 4 Df; e™i® + Djje ‘kﬂf’)

X e—iw;tﬂk,;x'

(5)

Here the amplitude coefficients A”7* are associated with
the general solution of (3) and are determined by means
of enforcing the continuity conditions for the tangential
field components at the layer interfaces. The coefficients
Df;,; represent the partial solution of inhomogeneous
equation (3) and are expressed in terms of the refracted field

B7*(wp)

amphtudes in each layer at the pump wave frequencies w,
and w;:

Esi |
(k)" - (kB)’
B (w1)B} ™ (w2)
Dn+ oL a-ﬁ~ J J )
(k)" - (k)
B BY*(w1)B} (w2)
M CHIC
B}~ (w1)Bj" (@)

n—
1j

M= e
D =

&;Yj 2 2>
(3)
(kzLJ) - (kzLi)
q = 21 ks
j €2z kiky’
(2) Xxxzj
;BJ' = zL]kxlkzL; ]
Exxj
X Xzzzj€
_ XX j kzL] kzLj 222 ; XX} keikso
Sy ezz]
@) Xxxz;
Vi = kzijXIkzL) )
Exxj
.£ .
o (LA - B ),
£x. &2zj

K2
+ (l) ) (p) 2 xp
;L, =k kzLj’ kzLj = (kp - _Ezzj)exxj;

p=123 j=1.2

(6)

Here kifl are the z components of the wave vectors in jth
layer at frequencies w,, respectively; superscript n identifies
the period number in the stack. The coefficients Bj’-li (wy,) are
the field amplitudes inside the jth layer of the nth period at
the incident wave frequencies w; and w,. These coefficients
are obtained by imposing the continuity conditions for
the tangential field components of each pump wave of
frequencies w = w;; independently at the layer interfaces
and can be represented in the form:

- (40 00) = et ) ) (1R ) + £ (45 o) ) o)) 1 - (o)

zLj

R(wp)
3 My (wp) + (k27 (eaky))

My (w,) - (eak,,/k(”))

zLj

(7)

M“(w,,) + (kgz))/(sakp))Mll( ) + (eakp/k(p))



where ki) = kp+/a cos ®jp is the longltudmal wavenumber

in the surrounding medium and R(w,) is the reflection

coefficient at frequency wp. The transfer matrix M (wp) of
the finite linear periodic structure containing N periods
can be expressed in terms of the transfer matrix Mm(w,) =
mi(wp)Mma(w,) of a single period using Abeles theorem
[21]: I/\/I\(wp) = (ﬁt(wp))N, where #1),12(w, ) are the transfer
matrices of the constituent layers of the unit cell. The

matrices 3§") in (7) are defined as follows: & )(wp) =

((wp)"™) ™ and & (wp) = (Alwp)"™" - i (wp)) ™

To satisfy the boundary conditions at the interfaces of the
nonlinear layers at the combinatorial frequency w3, the TMM
procedure has to be modified in order to take into account
the contribution of the frequency mixing products generated
in each layer and subsequently refracted through the periodic
stack. Namely, the fields at interfaces of the first layer in the
binary unit cell are related as follows:

1) (1)
HY (03,%,0)) _ H{Y (w3, x,d
( (w3, % ))=mu(w3)( p (w3 1))

Ey) (w3, ,0) Ey (w3, d))

(8)
. d
e (1))
Similarly, for the second layer we obtain
HY (w3, x,d )) (H‘”(w x,dy +d ))

y1 3,A,041] = 5 y2 3y, X, U] 2
( O ws,x,d)) = 2N B 0,2,y + ) o
9

et (£ 160

Thus, (8) and (9) define the interrelation between the fields
at the external interfaces of the constituent unit cell. After
applying the boundary conditions sequentially to all N unit
cells, the fields at the stack outer interfaces can be represented
in the form:

H(l)(w3) X, 0))
(1)(w3axa O)

(N)(ws,x L) iy (w3) T11(d1)
E(N)(w3,x,L) W\ &,(dy)

+ i (w3) 2 (ws) (g:g: Jt 2;)

e +M\(w3)(Z§EB)'

I/VI\((%)(
(10)
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Here 7, and &j, contain the terms proportional to coeffi-
cients D{5,j = 1,2:

nt + nt — n— -+ n— _—

D 011+D2j01j+D1j02j+D2j02]7’

n+ - n— .+ n— -

f Dl) 031+D2j‘73j+D1j U4j+D2}' U4j,

kzL j

d
o5 = coskzLjd 3 smkzLJd exikaid,
zLj
s _ @ Kl o) d
03; = cosky;dj + lk(s) sinkp;dj — LLR
zLj

3)

+ C k Lj k k L + +

of = L) k(3) Tzl cos k(3)d z J ik}, dj

3j zL] (3) zLi%]
W3 Exxj kzLj ZL]

+ ¢ kg)J n k@ d kzLJ PAC kz_Lj +ikfy;d;
04j == zLj %) FE [0} ZL] j+ ‘"(‘BTe J .
w3 exxj ZL] zLj
(11)

The magnetic field of frequency ws emitted from the stack
of nonlinear layers into the surrounding homogeneous
medium has the form:

L (3)
Fe iz 7 <0,

Fteikg)z’ z> L, (12)

H,‘f(w;) = e—iw3t+ikx3x{

where k&) = \K3e, — k23 is the longitudinal wave number of
the wave at frequency ws in the homogeneous media and the
nonlinear scattering coefficient F, and F; are determined by
enforcing the interface boundary conditions at z = 0, L.

Finally, by combining (5), (10), and (12) we obtain the
sought coefficients F, ;:

ks k &
F, = ( 3’(i) (n) 41 + (ﬂN)zz)/‘l (kaﬁa (N) 1y + (’7N)12)A2’

- (/‘1 + Az%) 5
kza

(13)
where
1 N
p= 5 2 [ pmin 4 () pin + (e paan + () b
p=12
A A~ 57131) A k3£a
A=(’7N)11+(’7N)22+a(’7 N2 pe) (in) 215
fin = [M()]", 7 = famriin(ws),  7iv = M(ws).
(14)

It is necessary to note that F,; in (13) always remain finite
inspite of the fact that coefficients D};,; have singularity
at kij; = ki?l However, it can be shown that coefficients
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A%* in (5) contain exactly the same pole as Dfj,; at
®;; = Ojp, and their combined contribution is finite at all
frequencies and incidence angles,

Thus the modified TMM approach presented in this
section gives the closed-form expressions for the nonlinear
scattering coefficients of the finite PhC composed of the
binary nonlinear layers. The obtained analytical formula-
tions not only provide a qualitative insight in the formation
of the nonlinear response and the properties of the scattered
fields but also enable fast quantitative analysis of the specific
PhC configurations.

The results of numerical simulations based upon the
analytical solutions obtained here are presented in the next
section to illustrate the effects of structure and materials
parameters on the properties TM waves of combinatorial
frequencies generated by nonlinear PhC in the three-wave
mixing process.

3. Properties and Mechanisms of Nonlinear
Scattering by Finite Periodic Stacks

The analytical solutions for the coefficients F,; obtained
in the preceding section have allowed us to examine the
mechanisms of nonlinear scattering in 1D anisotropic non-
linear PhCs. The effects of the constituent layer parameters,
unit cell aspect ratio, and the pump wave frequencies w;,,
and incidence angles ®;,, on the properties of the waves
of combinatorial frequency w3 = w; + w; generated in the
three-wave mixing process have been analysed with the aim
of increasing the efficiency of nonlinear processes in the
artificial medium.

To illustrate the features of the frequency mixing in the
1D nonlinear anisotropic PhCs, the characteristics of the
combinatorial frequency waves are discussed here with the
examples of periodic stacks of binary anisotropic dielectric
layers of CdS and ZnO described by the tensors € and ¥ (1)
with the following parameters [22]:

CdS: exx1 = 5.382,€,;1 = 5.457 () = Exx1/Ez21 =
0.986); Yexet = 2.1 X 1077, Yer = 192X 1077, Yenoi
3,78 X 1077;

ZnO: g4y = 1.4, €0 = 2.6(ay = Exx2/€z0 = 0.538),
Yoxz = 2.82%1078, yzr0 = 2.58 %1078, y200 = 8.58 X
1%

The constituent layer thicknesses are d; = 0.08 mm and
d, = 0.05mm, unless specifically defined. Exterior of the
layer stack in Figure 1 is an air with permittivity e, = 1.

3.1. Spectral Efficiency of the Combinatorial Frequency Gen-
eration. PhCs are known to be instrumental in enhancing
the SHG and THG efficiency by choosing the pump wave
frequency close to the PhC band edge. Therefore, it was
interesting to explore whether similar facility could be
exploited for the combinatorial frequencies generated in the
three-wave mixing process. The spectral bands of a periodic
stack of binary linear anisotropic dielectric layers have been
inferred first from the reflectance |R(w)| of the pump waves.
Figure 2 illustrates |R(w)| for the TM wave incident at angle

3
¥
1
25} g
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s RO
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NX i ' ?! i 1
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FiGure 2: Reflectance of plane TM wave incident at ®; = 30° on
the periodic stack of N = 7 binary dielectric layers of thicknesses
d, = 0.08 mm and d; = 0.05mm.

®;; = 30° on the periodic stack containing N = 7 unit
cells. The bandgaps, corresponding to |R(w)| = 1, are clearly
observable in Figure 2, but it is necessary to note that the
respective frequency bands change with the incidence angle
and layers’ parameters.

The field intensities | F, ¢ 2 at the combinatorial frequency
w3 = w) + w, generated in the same structure are shown in
Figure 3 for variable frequency w; of a pump wave incident
at ®;; = 30°, while the frequency w, = 1.135 x 105! of
the other pump wave, incident at ®; = 45°, was fixed at the
passband edge. Comparison of Figures 2 and 3 demonstrates
strong correlation between IF,,¢I2 and |R(w)|. However, in
contrast to SHG and THG, the band edges have little effect on
the ws generation efficiency, namely, |Fe|? reaches its maxima
inside the transparency bands, and only |F; | exhibits small
kinks at the band edges when frequency w, of the first pump
wave varies.

Figure 3 also shows that the peak intensity |F,|? grows
with w; and the efficiency of the frequency conversion
is higher when the w; remains inside the pump wave
transparency bands. This effect can be attributed to the
increase of the pump wave interaction length at the higher
frequencies further assisted by the enhanced mixing effi-
ciency at Wolf-Bragg resonances of Bloch waves in the finite
PhCs. It is noteworthy that (N-1) resonances occur in each
transparency band of the N-cell stack. At these resonances
|[R(w)| = 0 as the stack overall thickness equals an integer
number of Bloch half-waves with the wavenumbers k(w),
that is, Nk(w) (d; +dp) = nq, q = 0,+1,+2,..., where k(w)
is defined by the relation cos k(dy +dy) = (my +mx)/2, my
and m,, are elements of the unit cell transfer matrix 7 (w)
defined in connection with (7).

3.2. Effect of the Stack Thickness. As indicated in the preced-
ing section, the number N of stacked unit cells and thickness
of the whole stack may have strong impact on the efficiency
of harmonic generation in nonlinear PhC. This effect has
been predicted by the analytical formulations (13) and
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Ficure 3: The field intensity at frequency w3 = w; + w, radiated
in the reverse (|F,|: red solid line) and forward (|F;|*: black dash-
dot line) directions of the z-axis at @;; = 30°; @, = 45°, N = 7,
d, = 0.08 mm, d, = 0.05mm, and w, = 1.135 x 10§71,

confirmed by the numerical simulations in Figure 4. Indeed,
the field intensity IF,,tl2 exhibits nonmonotonic depend-
ences on the number N of unit cells in the stack as illustrated
by Figure 4 for two different combinatorial frequencies w3 =
w) + w; (the pump wave frequencies w; and w; are close to
the PhC band edges in both cases). Indeed, Figure 4(a) shows
that |F,|> has maxima at N = 32,57,89,..., whereas |F,|?
has a higher peak at N = 32 and then follows almost the
same pattern as |F,|?. However, at the higher frequency w,
maxima of IF,‘,I2 occur at N = 108 and N = 127 as shown
in Figure 4(b), where the peak values of |F,|? are about two
orders of magnitude higher than those in Figure 4(a) and
about 20 times larger than for |E,|%. The IF,JI2 can also
exhibit giant growth and reach their extrema at Wolf-Bragg
resonances of very high orders in rather thick stacks with
the special combinations of the pump wave frequencies,
incidence angles, and the layer parameters as suggested in
[13].

3.3. Effect of the Pump Wave Incidence Angles on the Frequency
Mixing Efficiency. Harmonic generation in 1D PhCs are
usually analysed at normal incidence of pump wave on
the stacked layers. In the case of combinatorial frequency
generation by a pair of pump waves, incident at different
angles, an additional degree of freedom exists in realising
the phase synchronism and controlling the whole frequency
mixing process. To gain insight in the effect of the incidence
angle on the combinatorial frequency field intensities, |F, ;|
have been simulated at variable incidence angle ®;; and fixed
angle ®;, of the respective pump waves and different number
of the unit cells in the stack: N = 7, 15, 25.

Examination of |F,;(®; )I2 in Figure 5 shows that when
the stack is relatively thin (N = 7), both |F,|* and |F;|?
exhibit similar behaviour and smoothly vary with ;.
However, additional resonances arise in the thicker stacks,
and the lF,,,(@,',)I2 dependencies qualitatively change. Sev-
eral factors are responsible for these alterations. At first,
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dissimilar reflectance and transmittance of the individual
pump waves have significant effect on the ratio of the pump
wave amplitudes in the three-wave mixing process. Secondly,
angular variations of the PhC transparency bands become
more noticeable in the thicker stacks. Finally, the higher
order spatial harmonics, which can resonate in thicker stacks,
contribute to the combinatorial frequency generation.

Both the reflectance/transmittance of pump waves and
the phase synchronism in the mixing process are essen-
tially dependent on the permittivities and anisotropy of
the constituent binary layers. Therefore the effect of the
constituent layer parameters has been assessed first to dis-
criminate contributions of the aforementioned mechanisms
to the combinatorial frequency generation. In order to
evaluate the effect of the layer anisotropy, the intensities
|F:(©;1)]* have been simulated at the modified permittivity
ratios €xx1/€z1 = 201, &x2/€2 = 20, and Exx1/€221 = 1/2,
€xx2/€2z2 = &2/2 and are shown in Figure 6. Comparison
of the plots in Figure 5(b) for ewi1/€z21 = a1, &xx2/€z2 =
oy with the respective plots in Figure 6 for the modified
tensor £ demonstrates that variations of the layer anisotropy
qualitatively alter the efficiency of the combinatorial fre-
quency generation. Namely, we can observe that when the
layer anisotropy deviates from the specified values of a;;
in either direction, the combinatorial frequency intensity
considerably decreases, from a few times to several orders of
magnitude. Furthermore, additional angular undulations of
the field intensity occur at several incidence angles, Figure 6,
being inflicted by the resonances of the higher order spatial
harmonics.

3.4. Effects of Constituent Layer Thicknesses and Resonance
Enhancement of Frequency Conversion. The stack overall
thickness may have profound influence on the frequency
mixing efficiency. This can be the result of the increased
number of unit cells in the stack as illustrated in Figure 4 or
variations in the thicknesses of the constituent layers. The
earlier studies have demonstrated that the efficiency of
combinatorial frequency generation can significantly vary
with thickness of an individual nonlinear layer at the higher
order Wolf-Bragg resonances [13]. This suggests that the
aspect ratio of the binary layers in the unit cell as well as
the unit cell size can provide independent controls of the
dispersion and the pump wave reflectance/transmittance.
In order to elucidate this effect, the intensities IF,,,I2 at
frequency w3 = w; + w; have been analysed at the variable
thickness of one layer, while thickness of the other was
fixed. Figure 7 displays |F,.|* for a stack with N = 7 unit
cells illuminated by the pump waves incident at ®;; = 38°
and ®; = 45° corresponding to the maximal intensity of
IF,,,I2 for the reference unit cell with d; = 0.08 mm and
d, = 0.05mm in Figure 5. It can be seen that both |Fr,[12
grow with thickness of the layers in the period, while |Fe|?
always remains greater than |F,|. It is necessary to note
that the growth rate of the |F,; 2 versus d; (Figure 7(b)) is
higher than that versus d, (Figure 7(a)) for nearly an order
of magnitude. This effect is directly related to the fact that
the components of the nonlinear susceptibility tensor ¥ in




