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PREFACE

Goals

This book arose from the need to provide ample motivation, insight, and understanding
in my introductory course in ordinary differential equations (ODEs) for engineering and
science students. Far too often students get lost in the details of determining a solution
formula to an ODE. Because the actual use of ODEs goes beyond such calculations,
students cannot rely on the “plug *n’ chug” methods that adequately served most of
them in calculus. Consequently, I have four primary goals:

1. To develop techniques for obtaining solutions for special types of ODEs (includ-

ing the use of a computer algebra system such as Maple);

2. To squeeze as much information as possible from the ODE about its solutions
without solving the ODE, even when a closed-form solution is possible;

3. To develop numerical approximation methods for solving initial value problems
(IVPs), again even when a closed-form solution is possible; and

4. To illustrate by example how to model “‘real-world” phenomena with ODEs.

Approach

I employ a variety of approaches to enhance the reader’s understanding of ODEs. Visu-
alization tools, numerical estimation, symbolic computation, modeling, and applications
are interspersed and integrated throughout the book. The applications not only add a
sense of relevance to the study of ODEs, but also provide a common point of experience
by which we can analyze and interpret their solutions. A great effort has been made to
motivate most topics and to provide interpretations of a geometric or physical nature.

The style of this book is based in part on successful teaching strategies that I have
used over many years. Typically, a new topic is introduced with a motivating example
that demonstrates its need. In other words, I attempt to answer the question, “What is
this good for?”" Often I provide a *“working definition™ while properties of the topic are
being explored. Another example is detailed with steps that suggest a generalization.
When appropriate, I outline a solution procedure that is followed by yet another ex-
ample. At this point, if appropriate, I introduce formal material. After a concluding
example, an explanation, a justification, or even a proof is provided.

Features

B Readability: The language used to convey the material is more informal than
most books. In the development of new concepts, lots of detail is provided in the
examples.

B Visualization tools: Direction fields, level surfaces (for implicit solutions), and
phase portraits are introduced as soon as possible and are used extensively
throughout the book to interpret the properties of solutions.
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® Numerical tools: Numerical methods are introduced early on. Euler’s method for
first-order ODEs is developed in Chapter 1 and is motivated by direction fields.
Euler’s method for second-order ODEs is introduced as soon as the concept of
phase plane is introduced in Chapter 5. These methods are used to analyze many
subsequent examples and applications where closed-form solutions are not pos-
sible or are too difficult to interpret.

B Alerts: Specific areas where students are more inclined to make a mistake are set
off by an “ALERT.”

m Technology: Where appropriate, subsections labeled ““Technology Aids™ illus-
trate how to use mathematical software. The examples include the complete
Maple code for solving ODEs, displaying phase portraits, and computing nu-
merical approximations. Although I have used Maple as the computer algebra
system of choice, Mathematica or Macsyma will do just as well. MATLAB is
also an excellent choice for numerical calculations and graphing. Finally, the
author’s DIFF-E-Q provides “quick and dirty” direction fields and graphs of
solutions. Most sections have exercises identified by the icon B this indicates
the exercise should be done with software.

m Applications: Applications demonstrate the need for theory and illuminate the
theory. Many of the applications are new for a book at this level.

B Modeling: Modeling is distinguished from applications in that modeling empha-
sizes how to create an ODE for a real-world problem. Modeling is introduced at
length in Chapter 1 and pops up throughout the book. Identified by the icon

shown in the margin at left, these discussions may be safely skipped by those
readers and instructors who want to focus strictly on the mathematics.

Prerequisites and Audience Level

It is assumed that the reader has had the standard three-semester calculus sequence.
Some familiarity with complex numbers and matrices would be nice, although appen-
dices offer brief summaries of this basic material including power series. This book is
written to reach a broad range of students. Enough detail is included in many of the
procedures, examples, and applications so as to reach out to some of the less-prepared
students. To those students with better than average preparation and ability, the book
includes many advanced features, such as continuous dependence, a geometric interpre-
tation of convolution, and a wide array of interesting examples (which are not normally
included at this level).

Organization and Content

There are many paths through this book. In the table on the next page, I have identified
how to construct a semester course in terms of core material and additional topics for
five different types of courses:

1. Traditional: emphasizes solution methods

2. Qualitative: emphasizes theory of ODEs and properties of solutions

3. Numerical: emphasizes algorithms for numerical estimation and control of error
4. Modeling: emphasizes applications

5. General: a sampling of the first four topics

Other topics can be constructed to suit the instructor’s agenda.
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Additional Topics
Core
Chapter  Material Traditional ~ Qualitative ~ Numerical Modeling General
1 1.1-1.5 1.6
2 2.1,2.2 23-25
3 3.1,3.2 3.1,8.3 3.1,3.2 31,32
4 4.1-45 4.7 4.6 4.6,4.7 4.6,4.7
5 5.1 54 5.2,5:3 52,54
6 6.1-6.4 6.1-6.6 6.1-6.4
7 7.1-7.3 7.1, 7.2
8 8.1-8.3 8.5
9 912,i9.8 9.1 8.1 9.1, 9.2
Note:  Section 1.6 is to be skimmed first and later read as needed in subsequent sections.
1.6 < 1.1-1.5
Y
3.1,322, 3.3 < 2.1,2.2 » 23-25
> l Y l <
4.1-4.5 > 4.6
Y Y
3 4.7
Y
Y Y
7.1-7.3 < 53 < 5.1 —>— 6.1-6.4 > 4.6
A A Y'Y Y Y
74,75 52,54 < ~& 6.5.6.6 <
l Y VY
9.1 ~€ 8.1-8.3 > 8.4,85
¥
9.2,9.3

Section Dependencies
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Technology Aids

Desktop PCs and workstations allow us to do what was unimaginable barely a dozen
years ago. Software such as Macsyma, Maple, and Mathematica is capable of per-
forming most of the symbolic, graphical. and numerical operations described in this
book. These programs, known as computer algebra systems (CAS), treat ODEs sym-
bolically. Software such as Matlab is primarily used for numerical and graphical opera-
tions. (With the exception of some graphs in Section 5.1 that were made with Lascaux
Graphics Fields & Operators, every graph in this book was produced using either Maple
or Matlab.) These programs are available on MS Windows, Macintosh, and X-Windows
platforms. Additionally, DIFF-E-Q, the author’s MS DOS program for direction fields,
phase portraits, and numerical approximations, is available for downloading via ftp from
either math.gmu.edu/pub/saperstone or ftp.gmu.edu/math/ssaperst.
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CHAPTER

INTRODUCTION

1.1 Examples of ODEs 1.4 The Geometry of First-Order ODEs
1.2 Solutions of ODEs 1.5 Numerical Estimation of Solutions
1.3 Separable Equations 1.6 Modeling with ODEs

EXAMPLES OF ODEs

Many systems that undergo changes of state may be described mathematically by an
ordinary differential equation. In our desire to understand and control our world, we
have learned how to use ordinary differential equations to model such diverse phenom-
ena as atmospheric turbulence and epidemiology.

DEFINITION ODE ; ‘
An ordinary differential equation (ODE) is an equation that relat
variable, an unknown function of the independent variable, and

tives of the function. ‘ ‘ ‘ -

Here are some typical ODEs:

dx dx j
a. — = —4x b. — =0.6x — 0.04x*
dt dt
d*x dx N d?x dx\’
c. —— +2—+6x=e "cost dr—=|—
dr? dt dr> dt
1%x
: 324\'3—13+2
dt> ’
&1 4
—= —Qx + y+ et
dt




2 CHAPTER ONE INTRODUCTION

EXAMPLE 1.1

In these equations, we have chosen to represent the unknown functions by x(t) and
¥(2). There is nothing special about the choice of the symbol x(7); we could have used
and will use the symbols y(x), u(v), etc., for the unknown functions. However. we must
be aware, say in the case of y(x), that y is the dependent variable and x is the indepen-
dent variable. So, for instance, equation (d) may also be expressed

d2y <dy>2
% = |22

dx? dx
With an occasional exception (as just demonstrated), we adopt the convention of letting
t be the independent variable and x, y the dependent variables.

What do we do with an ODE now that we have one? We try to solve it by finding
the unknown function x = x(7). A substantial portion of this book is devoted to tech-
niques for solving ODEs. Though most ODEs have solutions, we frequently find that a
solution cannot be written down explicitly. However, it’s possible to obtain a lot of in-
formation about a solution of an ODE without finding that solution in the first place.
For example, we will see how to make a sketch of a solution of an ODE, how to deter-
mine when a solution has a limiting value as t — o, and learn how to calculate such
limiting values, ALL WITHOUT EVER SOLVING THE ODE!

The solution of an ODE determines a value (or a vector) for the state of a system at
each point in time. The great advantage of an ODE formulation of a system is that the
future evolution of the system depends only upon the value(s) of the current state and
not upon its history. That is, the future states are completely determined by the present
state.

Ordinary differential equations have been around since the development of calculus
(by Isaac Newton, 1642—1727, and Gottfried Leibniz, 1646—1716). It should not be
surprising that many problems in physics, engineering, and, of late, biology, economics,
and even sports can be formulated as ODEs. The examples that follow provide a sam-
pling of the variety of ODEs that occur in practice. Do not get bogged down in trying to
understand fully how these equations were derived or how they are solved. Rather, just
browse through them and whet your appetite. Each is discussed in greater detail at some
later point in the book.

Some Ordinary Differential Equations from the Real World

It is important to note that the following ODEs may appear to be simplistic models of
the phenomena they purport to describe. Yet in all instances they convey the essential
aspects of the behavior of the examples.

Falling body (separable equation: Section 1.3)

d?y
dr?

8




1.1 EXAMPLES OF ODEs 3

The symbol y denotes the distance an object has fallen during 7 units of time. The constant g is
the acceleration due to gravity. l

EXAMPLE 1.2 Radioactive decay (separable equation: Sections 1.3, 2.6)

dN

—=-AN
dt

The symbol N denotes the number of carbon 14 atoms in a sample of material at time r. The
parameter A > 0 is a measure of how fast the atoms decay. ll

EXAMPLE 1.3 Pollution (linear equation: Section 2.1)

Q — T'out )x
=y |———————
dr Vo + (rnn = rount

Hydrochloric acid (HCI) accidentally leaks from a storage tank into a spring-fed lake that in turn
feeds a single stream. By the time the acid reaches the stream, the acid is uniformly mixed with
the lake water. The variable x represents the amount of HCI in the lake at ¢ units of time after the
spill. The parameters are: ryy, the rate at which the acid flows into the lake; r ., the rate at which
the (contaminated) water leaves the lake (by flowing into the stream or by evaporation); and V.
the initial volume of water in the lake. l

EXAMPLE 1.4 Pursuit (homogeneous equation: Section 2.2)
dy Vy— WVx2+y2

dx Vx

The variables x and y refer to the coordinates of a ferryboat that is crossing a river. The parameter
V is the boat’s speed in still water and the parameter W is the speed of the river current. B

EXAMPLE 1.5 Aircraft pull-up from a dive (exact equation: Section 2.3)

dv gvsin @

dd kv — gcost

The variable v denotes the aircraft’s airspeed and # denotes the flight-path angle. The constant
g is the acceleration due to gravity, and k is a combination of a number of aircraft structure
constants. l
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EXAMPLE 1.6

EXAMPLE 1.7

EXAMPLE 1.8

Long jump (reduction-of-order: Section 2.5)

>

d?x 4 <d.\' B
I’ll—1 = =€ P\ ==
dr? PN dr /O;/ gum—————
f‘\’ \\\\

The variable x is the distance traveled by the jumper 7 units of time after becoming airborne.
There are a number of parameters: m is the jumper’s mass, A is the area of the vertical cross
section the jumper’s body presents to the air, p is the density of the air, and ¢p is the drag
coefficient.! W

MacPherson strut (linear second-order equation with constant coefficients: Sections 1.2,
1.6,4.1,4.3, and 4.7)

dlv\r i (/}‘ ¥k f(l )
n—= G =
dr? dt >

The variable y denotes the displacement at time 7 of an automobile frame from its rest position.
The parameter m is the mass supported by the strut; ¢ is a measure of the damping effect of the
shock absorber; and & is the spring constant. The function f(¢) represents an external force acting
on the strut (such as a road bump). W

Pendulum clock (Laplace transforms: Section 6.6)

d’6 o g
+2b—+ =60 =A58(0
dr? )dt L @

A bob of mass m is attached to a weightless rigid rod of length L. The other end of the rod pivots
about a fixed support. The bob is constrained to swing in a vertical plane. The variable # measures
the angle the rod makes with the vertical. An escape wheel drives the hands of the clock through

'"Though the current world record for the long jump was set in 1991 by Mike Powell (29 ft 4% in.), consider-
able interest was focused for years on Bob Beamon’s world-record jump in the 1968 Olympics in Mexico
City. Beamon'’s jump exceeded the previous world record by over | ft 9 in. The mile-high altitude was thought
to be a factor in Beamon'’s feat. Thus the parameter p is singled out in order to study the effect of altitude (and
body posture) on long-jump performance. The air density (and hence the atmospheric pressure) in Mexico
City is 80% of that at sea level. Normally p is absorbed by the term c,.



EXAMPLE 1.9

EXAMPLE 1.10

EXAMPLE 1.11

1.1 EXAMPLES OF ODEs 5

a sequence of gears. The wheel is mounted on a spindle that rotates as a result of a torque created
by a hanging weight. The motion of the escape wheel is stopped by a toothed anchor that rocks
back and forth with the pendulum rod. The teeth are designed so that each time the rod swings
through the vertical, the escape wheel exerts a small impulse on the anchor, thereby giving the
bob an extra push to overcome the friction in the system. The term AS(6) represents this impulse.
The parameter b represents the frictional force and g is a constant, the acceleration due to
gravity. l

Ocean waves (linear second-order equation with nonconstant coefficients: Section 7.5)

d?y dy w?
= 4= 4

x
dx*  dx ag’

The variable y denotes the height of a wave at the beach or in a wave pool and x its distance from
the shoreline or edge. The parameter w is the frequency of the incoming wave; « is the slope of
the ocean or pool floor; and g is the acceleration due to gravity. W

Loudspeaker (system of linear equations: Section 8.5)

(dx _

dt :

d k 3 T
<—y:——xfiy+—i
dt m m m
di T R .
—=——y—=i+EQ@
\ dt Yo L

A time-varying voltage source E(1) (typically an audio amplifier) drives a moving-coil transducer
T, which in turn causes the speaker diaphragm to vibrate. (The transducer converts electrical
energy to mechanical energy.) The variable x denotes the displacement of the speaker diaphragm
from equilibrium; y denotes the velocity of the diaphragm. Flexible lead-in wires from the voltage
source carry a time-varying current i to the transducer. Internal electrical resistance and self-
inductance of the transducer are denoted by R and L, respectively. The motion of the speaker of
mass m is modeled as a damped mass—spring system with damping coefficient ¢ and spring
constant k. Wl

Predator—prey (system of nonlinear equations: Sections 8.1, 9.3)

dx

—— — pbxy
o Bx:

dy

— = —yy+dxy



CHAPTER ONE INTRODUCTION

o]

Number in Thousands

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935

Year

Reprinted, by permission, from Haberman, Mathematical Models (p.225). Prentice Hall, 1977

The variables x and y denote the populations of hare and lynx, respectively, in Canada at time 1.
The parameters are «, the growth rate of the hare in the absence of any lynx, and v, the death rate
of the lynx in the absence of any hare. The quantities 8 and & are measures of hare—lynx
interactions. W

Some ODE Terminology

The order of an ODE is the order of the highest derivative that appears in the equation.
For instance, the order of equation (a) at the opening of this section is I, the order of
equation (c) is 2, and the order of equation (d) is also 2. The order of a system of ODEs
is the order of the highest-order derivative that appears in any equation of the system.
Thus the order of the system (e) is 2. The definition of an ODE given at the start of the
section may be expressed symbolically as follows:

DEFINITION General Form of an nth-Order ODE |

Systems of ODEs, such as equation (e) on p. 1 or Examples 1.10 and 1.11, are
comprised of two or more equations, though not all necessarily of the same order. The
treatment of systems of ODE:s is postponed to Chapters 8 and 9. Until then we consider
only single ODEs.

To illustrate the meaning of the general form, we express some of the equations we
have seen in terms of a function F.

dr\  dx

& 0.6x — 0.04x2 Flox ) =% —06x+ 0.04x2 =0
d i)~ dr

d?y dy dy d?y d?y dy

T eZry=0 Fleyn2L 2 )=+ Eir=0
ar T S ( Y dr2> Tar T Ca T
dx e e dx)  a (ae)
"ar T PP N dr "z T PP\



