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PREFACE

7z

Combinatorial reasoning underlies all analysis of computer systems. It plays a
similar role in discrete operations research problems and in finite probability. Two
of the most basic mathematical aspects of computer science concern the speed and
logical structure of a computer program. Speed involves enumeration of the number
of times each step in a program can be performed. Logical structure involves flow
charts, a form of graphs. Analysis of the speed and logical structure of operations
research algorithms to optimize efficient manufacturing or garbage collection entails
similar combinatorial mathematics. Determining the probability that one of a certain
subset of equally likely outcomes occurs requires counting the size of the subset.
Such combinatorial probability is the basis of many nonparametric statistical tests.
Thus, enumeration and graph theory are used pervasively throughout the mathematical
sciences.

This book teaches students in the mathematical sciences how to reason and model
combinatorially. It seeks to develop proficiency in basic discrete math problem solving
in the way that a calculus textbook develops proficiency in basic analysis problem
solving.

The three principal aspects of combinatorial reasoning emphasized in this book
are: the systematic analysis of different possibilities, the exploration of the logical
structure of a problem (e.g., finding manageable subpieces or first solving the problem
with three objects instead of 7), and ingenuity. Although important uses of combina-
torics in computer science, operations research, and finite probability are mentioned,
these applications are often used solely for motivation. Numerical examples involving
the same concepts use more interesting settings such as poker probabilities or logical
games.

Theory is always first motivated by examples, and proofs are given only when
their reasoning is needed to solve applied problems. Elsewhere, results are stated
without proof, such as the form of solutions to various recurrence relations, and then
applied in problem solving. Occasionally, a few theorems are stated simply to give
students a flavor of what the theory in certain areas is like.

Since 1980, collegiate curriculum recommendations from the Mathematical
Association of America have included combinatorial problem solving as an important
component of training in the mathematical sciences. Combinatorial problem solving
underlies a wide spectrum of important subjects in the computer science curricu-
lum. Indeed, it is expected that most students in a course using this book will be
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Vi Preface

computer science majors. For both mathematics majors and computer science
majors, this author believes that general reasoning skills stressed here are more im-
portant than mastering a variety of definitions and techniques.

This book is designed for use by students with a wide range of ability and maturity
(sophomores through beginning graduate students). The stronger the students, the
harder the exercises that can be assigned. The book can be used for a one-quarter,
two-quarter, or one-semester course depending on how much material is used. It may
also be used for a one-quarter course in applied graph theory or a one-semester or
one-quarter course in enumerative combinatorics (starting from Chapter 5). A typical
one-semester undergraduate discrete methods course should cover most of Chapters
1 to 3 and 5 to 8, with selected topics from other chapters if time permits.

Instructors are strongly encouraged to obtain a copy of the instructor’s guide
accompanying this book. The guide has an extensive discussion of common student
misconceptions about particular topics, hints about successful teaching styles for this
course, and sample course outlines (weekly assignments, tests, etc.).

The fourth edition of this book, like the second and third editions, puts the
graph theory chapters first. The pictures associated with graphs have proven to be
a valuable aid in introducing students to combinatorial reasoning. The reasoning
required in enumeration problems quickly becomes very challenging—for too many
students, overwhelming—without the preparation in combinatorial reasoning pro-
vided by graph theory. This edition has new examples, expanded discussions, and
additional exercises throughout the text.

Many people gave useful comments about early drafts and the first edition of
this text; Jim Frauenthal and Doug West were especially helpful. The idea for this
book is traceable to a combinatorics course taught by George Dantzig and George
Polya at Stanford in 1969, a course for which I was the grader. Many instructors
who have used earlier editions of this book have supplied me with valuable feedback
and suggestions that have, I hope, made this edition better. I gratefully acknowledge
my debt to them. Ultimately, my interest in combinatorial mathematics and in its
effective teaching rests squarely on the shoulders of my father, A. W. Tucker, who
had long sought to give finite mathematics a greater role in mathematics as well as
in the undergraduate mathematics curriculum. Finally, special thanks go to former
students of my combinatorial mathematics courses at Stony Brook. It was they who
taught me how to teach this subject.

Alan Tucker
Stony Brook, New York
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CHAPTER 1

ELEMENTS OF GRAPH
THEORY

7

1.1 GRAPH MODELS

The first four chapters deal with graphs and their applications. A graph G = (V, E)
consists of a finite set V of vertices and a set E of edges joining different pairs o
distinct vertices.” Figure 1.1a shows a depiction of a graph with V' = [a, b, ¢.d} and
E ={(a,b), (a,c),(a,d),(b,d), (c,d)}. Werepresent vertices with points and edges
with lines joining the prescribed pairs of vertices. This definition of a graph does not
allow two edges to join the same two vertices. Also an edge cannot “loop” so that
both ends terminate at the same vertex—an edge’s end vertices must be distinct. The
two ends of an undirected edge can be written in either order, (b, ¢) or (¢, b). We say
that vertex a is adjacent to vertex b when there is an edge from a to b. \

Sometimes the edges are ordered pairs o ices, €d directed edges. In a
directed graph, all edges are directed. See the directed graph in Figure 1.15. We write
(b, ¢) to denote a directed edge from b to c. In a directed graph, we allow one edge in
each direction between a pair of vertices. See edges (a, ¢) and (¢, a) in Figure 1.1b.

The combinatorial reasoning required in graph theory, and later in the enumera-
tion part of this book, involves different types of analysis than used in calculus and
high school mathematics. There are few general rules or formulas for solving these
problems. Instead, each question usually requires its own particular analysis. This
analysis sometimes calls for clever model building or creative thinking but more of-
ten consists of breaking the problem into many cases (and subcases) that are easy
enough to solve with simple logic or basic counting rules. A related line of reason-
ing is to solve a special case of the given problem and then to find ways to extend
that reasoning to all the other cases that may arise. In graph theory, combinatorial
arguments are made a little easier by the use of pictures of the graphs. For example,
a case-by-case argument is much easier to construct when one can draw a graphical
depiction of each case.

Graphs have proven to be an extremely useful tool for analyzing situations in-
volving a set of elements in which various pairs of elements are related by some
property. The most obvious examples of graphs are sets with physical links, such
as electrical networks, where electrical components (transistors) are the vertices and

*What this book calls a graph is referred to in many graph theory books as a simple graph. In general,
graph theory terminology varies a little from book to book.
3 ’



4 Chapter 1  Elements of Graph Theory

Figure 1.1 (@) (b)

connecting wires are the edges; or telephone communication systems, where tele-
phones and switching centers are the vertices and telephone lines are the edges. Road
maps, oil pipelines, and subway systems are other examples.

Another natural form of graphs is sets with logical or hierarchical sequencing,
such as computer flow charts, where the instructions are the vertices and the logical
flow from one instruction to possible successor instruction(s) defines the edges; or
an organizational chart, where the people are the vertices and if person A is the
immediate superior of person B then there is an edge (A", B). Computer data struc-
tures, evolutionary trees in biology, and the scheduling of tasks in a complex project
are other examples.

The emphasis in this book will be on problem solving, with problems about
general graphs and applied graph models. Observe that we will not have any numbers
to work with, only some vertices and edges. At first, this may seem to be highly
nonmathematical. It is certainly very different from the mathematics that one learns
in high school or in calculus courses. However, disciplines such as computer science
and operations research contain as much graph theory as they do standard numerical
mathematics.

This section consists of a collection of illustrative examples about graphs. We
will solve each problem from scratch with a little logic and systematic analysis. Many,
of these examples will be revisited in greater depth in subsequent chapters. _

The following three graph theory terms are used in the coming examples. A path
P is a sequence of distinct vertices, written P = x;—x,—- - -—x,, with each pair of
consecutive vertices in P joined by an edge. If in addition, there is an edge (x,, x;), the
sequence is called a(circuit; written X1—Xp—- - - —x,—x. For example, in Figure 1.1q,
b-d-a-c forms a path, while a-b-d-c-a forms a circuit. A graph is connected if there is
a path between every pair of vertices. The removal of certain edges or vertices from
a connected graph G is said to disconnect the graph if the resulting graph is no longer
connected; that is, if at least one pair of vertices is no longer joined by a path. The graph
inFigure 1.1ais connected but the removal of edges (a, b) and (b, d) will disconnect it.

Example 1: Matching

Suppose that we have five people A, B, C, D, E and five jobs a, b, ¢, d, e, and various
people are qualified for various jobs. The problem is to find a feasible one-to-one
matching of people to jobs, or to show that no such matching can exist. We can
represent this situation by a graph with vertices for each person and for each job,
with edges joining people with jobs for which they are qualified. Does there exist a
feasible matching of people to jobs for the graph in Figure 1.2?
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The answer is no. The reason can be found by considering people A, B, and "
D. These three people as a set are collectively qualified for only two jobs, ¢ and d. e
Hence there is no feasible matching possible for these three people, much less all five /7
people. An algorithm for finding a feasible matching, if any exists, will be presented!
in Chapter 4. Such matching graphs in which all the edges go horizontally between |
two sets of vertices are called Bipartifé) Bipartite graphs are discussed further iy
Section 1.3. m '
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&

Figure 1.2

Example 2: Spelling Checker

A spelling checker looks at each word X (represented in a computer as a binary
number) in a document and tries to match X with some word in its dictionary. The
dictionary typically contains close to 100,000 words. To understand how this checking
works, we consider the simplified problem of matching an unknown letter X with one
of the 26 letters in the English alphabet. In the spirit of the strategy humans use
to home in on the page in a dictionary where a given word appears, the computer
search procedure would first compare the unknown letter X with M, to determine
whether X < M or X > M. The answer to this comparison locates X in the first 13
letters of the alphabet or the second 13 letters, thus cutting the number of possible
letters for X in half. This strategy of cutting the possible matches in half can be
continued with as many comparisons as needed to home in on X’s letter. For example,
if X < M, then we could test whether or not X < G; if X > M, we could test whether
X<S.

This testing procedure is naturally represented by a directed graph called a tree.
Figure 1.3 shows the first three rounds of comparisons for the letter-matching pro-
cedure. The vertices represent the different letters used in the comparisons. The left
descending edge from a vertex Q points to the letter for the next comparison if X <
Q and the right descending edge from Q points to the next letter if X > Q.

For our original spelling-checker problem, a word processor would use a similar,
but larger, tree of comparisons. With just 12 rounds of comparisons, it could reduce

G/M\S
SN S

Figure 1.3 D
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6 Chapter 1 Elements of Graph Theory {l}

Figure 1.4 | k

the number of possible matches for an unknown word X from 100,000 down to 25,
about the number of words in a column of a page in a dictionary. (Once reduced to
a list of about 25 possibilities, the search for X would usually run linearly down that
list, just as a human would.) =

Chapter 3 examines trees and their use in various search problems. Trees can be
characterized as graphs that are connected and have a unique path between any pair
of vertices (ignoring the directions of directed edges). The next example uses trees in
a very different way.

Example 3: Network Reliability

Suppose the graph in Figure 1.4 represents a network of telephone lines (or electrical
transmission lines). We are interested in the network’s vulnerability to accidental
disruption. We want to identify those lines and switching centers that must stay in
service to avoid disconnecting the network.

There is no telephone line (edge) whose removal will disconnect the telephone
network (graph). Similarly, there is no vertex whose removal disconnects the graph.

Is there any pair of edges whose removal disconnects the graph? There are several
such pairs. For example, we see that if the two edges incident to a are removed, vertex
a is isolated from the rest of the network. A more interesting disconnecting pair of
edges is (b, ¢), (j, k). It is left as an exercise to find all disconnecting sets consisting
of two edges for the graph in Figure 1.4.

Let us take a different tack. Suppose we want to find a minimal set of edges
needed to link together the eleven vertices in Figure 1.4. There are several possible
minimal connecting sets of edges. By inspection, we find the following one: (a, b),
(b, ¢), (¢, d), (d, h), (h, g), (h, k), (k, j), (J, [), (J, D), (i, e); the edges in this minimal
connecting set are darkened in Figure 1.4. A minimal disconnecting set will always
be a tree. One interesting general result about these sets is that if the graph G has

n vertices, then a minimal connecting set for G (if any exists) always has n — 1
‘edges. m pra—=m e

The number of edges incident to a vertex is called the(degree of the vertex.

Example 4: Street Surveillance

Now suppose the graph in Figure 1.4 represents a section of a city’s street map. We
want to position police at corners (vertices) so that they can keep every block (edge)
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under surveillance, that is, every edge should have police at (at least) one of its end
vertices. What is the smallest number of police that can do this job?

Let us try to get a lower bound on the number of police needed. The map has 14
blocks (edges). Corners b, c, e, f, h, and j each have degree 3, and corners a, d, g, i
and k each have degree 2. Since 4 vertices can be incident to at most 4 x 3 =_12 edges
but there are 14 edges in all, we will need at least five police. If all five police were
positioned at degree-3 vertices, then 5 x 3 = 15 edges are watched by the 5 police.
Since there are only 14 edges, some edge would be covered by police at both end
vertices. If four police are at degree-3 vertices and one at a degree-2 vertex, then
exactly 14 edges are watched—and no edge need be covered at both ends. (If fewer
than 4 of the 5 police are at degree-3 vertices, we could not watch all 14 edges). With
these general observations, we are ready for a systematic analysis to try to find 5
vertices that are collectively adjacent to all 14 edges.

Consider edge (c, d). Suppose it is watched by an officer at vertex d. Then vertex
c (the other end vertex of edge (¢, d)) cannot also have an officer, since we noted above
that if we use a degree-2 vertex, such as d, then no edge can be watched from both
end vertices. However, if vertex ¢ cannot be used, then edge (c, g) must be watched
from its other end vertex g. But now we are using two degree-2 vertices, d and g. We
noted above that at most one of the five police can be placed at a degree-2 vertex. We
got into this trouble by assuming that edge (c, d) is watched from vertex d.

Now assume no officer is at vertex d. Then we must watch edge (¢, d) with an
officer at vertex c¢. Since vertex d cannot be used, edge (d, h) can be watched only
by placing an officer at vertex h. Next look at edge (h, k). It is already watched by
vertex h. Then we assert that (/, k) cannot also be watched by an officer at vertex k,
since k has degree-2 and we noted above that if we use a degree-2 vertex, no edge can
be watched from both ends. We conclude that there cannot be an officer at vertex k.
Then edge (k, j) can be watched only by placing an officer at vertex j. We now have
officers required to be at vertices c, 4, and j.

Similar reasoning shows that with an officer at vertex j, there cannot be an officer
at vertex I; then there must be an officer at vertex e; there cannot be an officer at
vertex a; and there must be an officer at vertex b. In sum, we have shown that we
should place police at vertices c, h, J, e, and b. A check shows that these five vertices
do indeed watch all 14 edges. Since our reasoning forced us to use these five vertices,
no other set of five vertices can work.

At the beginning of this example, we showed that at least five corners were
needed to keep all the blocks (edges) under surveillance. Now we have produced a set
of five corners that achieve such surveillance. It then follows that five is the minimum
number of corners.

We conclude this example by noting that in this surveillance situation, one can
also consider watching the vertices rather than the edges: How few officers are needed
to watch all the vertices? We use the same type of argument as in the block surveillance
problem to get a lower bound on the number of corners needed for corner surveillance.
An officer at vertex x is considered to be watching vertex x and all vertices adjacent
to x. There are 11 vertices, and 6 of these vertices watch 4 vertices (themselves and
3 adjacent vertices). Thus three is the theoretical minimum. This minimum can be
achieved. Details are left as an exercise. m

:
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8  Chapter 1  Elements of Graph Theory

A set C of vertices in a graph G with the property that every edge of G is incident
to at least one vertex in C is called an(edge cover. The previous example was asking
for an edge cover of minimal size in Figure 1.4. The reasoning in Example 4 illustrates
the kind of systematic case-by-case analysis that is common in graph theory.

One goal of graph theory is to find useful relationships between seemingly un-
related graph concepts that arise from different settings. The following example in-
troduces the concept of independent sets, which have an unexpected relation to edge
covers.

Example 5: Scheduling Meetings

Consider the following scheduling problem. A state legislature has many committees
that meet for one hour each week. One wants a schedule of committee meeting
times that minimizes the total number of hours but such that two committees with
overlapping membership do not meet at the same time. S

" This situation can be modeled with a graph in which we create a vertex for
each committee and join two vertices by an edge if they represent committees with
overlapping membership. Suppose that the graph in Figure 1.4 now represents the
membership overlap of 11 legislative committees. For example, vertex c’s edges to
vertices b, d, and g in Figure 1.4 indicate that committee ¢ has overlapping members
with committees b, d, and g.

A set of committees can all meet at the same time if there are no edges between
the corresponding set of vertices. A set of vertices without an edge between any two is
called arindependent sé) of vertices. Our scheduling problem can now be restated as
seeking a minimum number of independent sets that collectively include all vertices.
This problem is discussed in depth in Section 2.3.

If we want to know how many committees can meet at one time, we are asking
the graph question: What is the largest independent set of the graph? Although it is
very hard in general to find the largest independent set in a graph, for the graph in
Figure 1.4, a little examination shows that there is one independent set of size 6, a, d,
/. g, i, k. All other independent sets have five or fewer vertices.

-Now for the unexpected link with edge covers. If V is the set of vertices in a
graph G, then / will be an independent set of vertices if and only if V — / is an edge
cover! Why? Because if there are no edges between two vertices in /, then every
edge involves (at least) one vertex not in /, that is, a vertex in V — . Conversely, if
C is an edge cover so that all edges have at least one end vertex in C, then there is
no edge joining two vertices in V — C. So V — C is an independent set. Check that
in Figure 1.4, the vertices not in the independent set a, d, f, g, i, kK form edge cover
b,c,e, h,j.

d

[P — l

Figure 1.4 i v
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A consequence of this relationship is that if 7 is an independent set of largest
possible size in a graph, then V — I will be an edge cover of smallest possible
size. So finding a maximal independent set is equivalent to finding a minimal edge
cover. m

Instead of modeling a geometric or other problem with a graph, it is possible to
model a graph with a geometric configuration. A graph G is called an mterval graph
if there is a one-to-one correspondence between the vertices of G and a collection of
intervals on the line so that two vertices of G are adjacent when the corresponding
intervals overlap. We now consider two problems in which we model a real-world
situation with a graph and then seek to model the resulting graph with an overlapping
family of intervals. In Section 2.3 an interval graph model arises in VLSI (Very Large
Scale Integrated) circuitry design.

Example 6: Interval Graph Modeling

A competition graph, used in ecology, has a vertex for each of a given set of species
and an edge joining each pair of species that feed on a common prey (i.e., the two
species compete for food). See the competition graph in Figure 1.5a. Ecologists have
given considerable attention to viewing competition graphs as interval graphs for the
following reason (see reference [3] for further details). Each species is thought of
having a “niche” in its ecological system, its position in terms of food it eats and

d = |
y ( = 4 I, Iy
I 1/
a) c €
(a) ®)
Iy 1y
Iy L,
A lf
(c)
a b c
p I, T
f e d Iy Iy
(d) (e)

Figure 1.5



