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Foreword

This manuscript will emphasize the investigated scientific research themes addressed
throughout our developments since my incorporation in September 2006 at Poly-
tech Clermont-Ferrand — Institut Pascal UMR CNRS 6602 (France) as an asso-
ciate professor. Obviously, it will not detail exhaustively all the developments un-
dertaken since 2006, but will only focus on the most important achievements/results
while highlighting the innovative scientific methodology leading to the different out-
comes.! The presented researches are focused on the way to increase the autonomy
of mobile mono robot as well as Multi-Robot Systems (MRS) to achieve complex
tasks. More precisely, the main objective is to emphasize the developed generic con-
trol architectures in order to enhance the safety, flexibility and the reliability of au-
tonomous navigations in complex environments (e.g., cluttered, uncertain and/or
dynamic). The proposed control architectures (decision/action) have been addressed
through three closely related elements: task modeling; planning and finally the con-
trol aspect. Among the main ideas developed in this manuscript are those related to
the potentiality of using multi-controller architectures.” Indeed, using this kind
of control permits us to break the complexity of the overall tasks to be carried out
and therefore allows a bottom-up development. This will imply the development
of appropriate reliable elementary controllers (obstacle avoidance, target reach-
ing/tracking, formation maintaining, etc.), but also the proposition of appropriate
mechanisms to manage the interaction of these multi-controller architectures while
ensuring the respect of different constraints and enhancing metrics/criteria linked to
the safety, flexibility and reliability of the overall control.

Although the developed concepts/methods/architectures could be applied for dif-
ferent domains (such as service robotics or agriculture), the transportation domain
remains the privileged target. Applications include the transportation of persons (pri-
vate car or public transport) as well as merchandise transportation (in warehouses or
ports for instance). The different proposals will be applied for simple robotic enti-
ties (like Khepera® robots modeled as unicycles) as much as for larger ones (like
VIPALAB® vehicles modeled as tricycles). The theoretical aspect will take a part of
the manuscript, but several simulations and experiments will be given to demonstrate
the efficiency of the adopted approaches.

!'The details could be shown in the referenced papers, supervised PhD thesis, project manuscripts, etc.
*Well-known initially in the literature as behavioral control architectures (cf. section 1.4, page 15).
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General Introduction

Everything should be made as simple
as possible, but not simpler.
Albert Einstein

GENESIS OF THE RESEARCH WORKS

During my PhD thesis [Adouane, 2005], achieved in the micro-robotics team at LAB
(Labortaoire d’Automatique de Besangon, France), the research objective was to
control a group of minimalist mobile robots, called ALICE [Caprari, 2003] (with
a dimension of 2cm x 2cm x 2cm) to perform, among others, the CBPT? (Coop-
erative Box-Pushing Task, cf. Figurel(a)). The constraints imposed by the use of
these minimalist structures as well as the nature of the achieved cooperative task,
which aims to control the navigation and the interaction of a swarm of mobile mini-
robots, led us to develop several mechanisms/ideas to deal with this highly dynamic
system. Indeed, the interaction of a swarm of mini-robots in the immediate vicin-
ity of the box to push is very high and needs to be addressed without neither high
cognition/planning (cf. section 1.3.2, page 11) aspects nor centralized control (cf.
section 1.3.3, page 13) [Adouane, 2005]. Therefore, fully reactive and decentralized
behavioral control architectures have been proposed to take into account the different
constraints linked to the control of this highly dynamic swarm of robots. More pre-
cisely, a Hierarchical Action Selection Process (HASP) was proposed which allows
us to coordinate with stimuli-response mechanism, the activity of the elementary
behaviors/controllers composing the proposed architectures. The HASP has been,
thereafter, improved by integrating mechanisms of fusion of actions and a mecha-
nism of dynamical gains adaptation [Adouane and Le Fort-Piat, 2005], to obtain the
Hybrid-HASP [Adouane and Le-Fort-Piat, 2004]. This last process of coordination
is more flexible, intuitive and scalable than the basic HASP, and it has been proved
to be strongly adapted to control highly dynamic multi-robot systems. This process
allows us, at the level of the robot, to coordinate in a hierarchical and flexible man-
ner the activity of a set of elementary controllers (behaviors), and at the level of the

3In the field of swarm robotics, the CBPT is among the privileged complex task, in order to study the
relevance of reactive and decentralized control architectures [Parker, 1999], [Yamada and Saito, 2001],
[Ahmadabadi and Nakano, 2001], [Baldassarre et al., 2003], [Mufioz, 2003].
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(a) (b)

FIGURE 1 (See color insert) (a) Experimentation of the proposed control ar-
chitecture with 8 mini-robots ALICE pushing a cylindrical object to a final
assigned area; (b) MiRoCo simulator.

group of robots, the coordination of the robot’s interactions for reaching global objec-
tives and desired mass effects. Otherwise, specific low-level communication, called
altruistic behaviors, reproducing the simple interaction (attraction/repulsion) of indi-
viduals constituting societies of insects [Bonabeau et al., 1999] were integrated into
the proposed control architectures in order to improve the efficiency of robots’ coor-
dination [Adouane, 2005].

The validation of the proposed mechanisms of control was made through ac-
tual experiments (cf. Figure 1(a)) but more intensively according to statistical
studies done on a large number of data obtained thanks to MiRoCo* simula-
tor (cf. Figure 1(b)). The performed statistical studies show, among others, the
existence of an optimal number of robots to achieve the CBPT and underline
the importance of implicit communications induced by the altruistic behaviors
[Adouane and Le-Fort-Piat, 2004]. It is important to emphasize that with this kind
of approach, followed during the PhD thesis [Adouane, 2005], there is no other an-
alytic technique to prove the actual reliability of the proposed control/strategy. The
step consisting of using statistical study in order to prove the efficiency of the pro-
posals is in general mandatory in these kinds of approaches [Bonabeau et al., 1999].

Although if the obtained results during the PhD are efficient to control a highly
dynamic multi-robot system, the lack of accurate analytic analysis reduces drastically
the scope of possible use of the already proposed control architectures, especially if
the targeted tasks imply close interaction between the robots and humans (e.g., trans-
portation or service robotics tasks) or industrial applications (e.g., automatic ware-
house management/manipulation/transportation by a group of mobile robots). It has
been decided thereafter to improve the features of these multi-controller architec-

4MiRoCo (for Mini Robotique Collective, cf. ref [Adouane, 2005, chapter 7]) is a reliable and 3D
simulator dedicated in general to cooperative mobile robotics. MiRoCo gives a very good approximation
of the different physical constraints linked to the interaction of the robots between them and with their
environment.
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tures, which still have large potentialities (cf. section 1.4, page 15), while permitting
analytic and accurate stability/reliability analysis. This could be reached while in-
troducing more automatic control theory and while better mastering the elementary
developed controllers and their interactions, in order to actually attest to the reliabil-
ity of the overall control architecture.

IMPORTANT INVESTIGATED DOMAINS AND MANUSCRIPT
STRUCTURE

The main ideas developed in this book are related to the potentialities of using multi-
controller architectures’ to tend ineluctably toward fully autonomous robot naviga-
tion even in highly dynamic and cluttered environments. Indeed, using this kind of
control permits us to break up the complexity of the overall tasks to be carried out and
therefore allows a bottom-up development. It will be shown in this manuscript how
the proposed techniques, concepts and methodologies can address different complex
mobile robot tasks. This will imply the development of appropriate reliable elemen-
tary controllers (obstacle avoidance, target reaching, formation maintaining, etc.), but
also the proposition of appropriate mechanisms to manage the interaction of these
multi-controller architectures while ensuring the respect of different constraints and
enhancing metrics/criteria linked to the safety, flexibility and reliability of the overall
proposed control architectures.

Furthermore, in order to enhance the autonomy of mobile robots, several investi-
gated works will be presented in this book, dealing with: modeling of sub-tasks; reli-
able obstacle avoidance; appropriate stable control laws for target reaching/tracking;
short-term and long-term trajectories/waypoints planning; navigation through se-
quential waypoints; cooperative control and interaction of a group of mobile robots.
More precisely, this manuscript is organized into 6 chapters:

* Chapter 1 introduces briefly the domain of autonomous mobile robotics while
highlighting its main achievements/challenges. It will also emphasize also
the main concepts/paradigms/motivations/definitions used throughout the text.
The objective is to clarify them in order to simplify the different explanations
and developments used in the rest of the book. Among them let us cite: the
boundary limit between planning and control; interest and most challenging as-
pects linked to multi-controller architectures; the notion of reactive/cognitive,
centralized/decentralized, flexibility, stability and reliability of the developed
control architectures.

» Chapter 2 is devoted to an important navigation function corresponding to
obstacle avoidance controller. Thereby, a safe and flexible obstacle avoidance
controller, based on Limit-Cycles, for autonomous navigation in cluttered en-
vironments will be presented. This chapter will also introduce important ele-

SWell-known initially in the literature as behavioral control architectures (cf. section 1.4, page 15).
SIt is to be noted that in literature, cognitive and decentralized are, respectively, also called deliberative
and distributed control architectures.
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mentary building blocks characterizing the different multi-controller architec-
tures developed throughout this manuscript. A brief description of the method-
ology to detect and to characterize obstacles in the environment will also be
presented.

Chapter 3 focuses on the proposed Hybridcp (Continuous/Discrete) multi-
controller architectures for online mobile robot navigation in cluttered envi-
ronments. The developed stable control laws for target reaching/tracking will
be presented. An important part of this chapter emphasizes how to obtain stable
and smooth switching between the different elementary controllers composing
the proposed architectures.

Chapter 4 focuses on the proposed Hybridpc (Reactive/Cognitive) control
architecture permitting us to simply manage the activation of reactive and
cognitive navigation according to the environment context (uncertain or not,
dynamic or not, etc.). This architecture is based among others on the use of
the homogeneous set-points definition coupled with appropriate control law
shared by all the controllers. This chapter will pay attention to the proposed
planning methods, mainly the one based on PELC for car-like robots.

Chapter 5 emphasizes the fact that it is not absolutely mandatory (as com-
monly admitted and broadly used in the literature) to have a predetermined
trajectory to be followed by a robot to perform reliable and safe navigation
in an urban and/or cluttered environment. In this chapter, a new definition of
the navigation task, using only discrete waypoints in the environment, will be
presented and applied for an urban electric vehicle. This approach permits us
to reduce the computational costs and leads to even more flexible navigation
with respect to traditional approaches (mainly if the environment is cluttered
and/or dynamic).

Chapter 6 is dedicated to the control of multi-robot systems. The focus will be
on dynamic multi-robot navigation in formation and on the cooperative strate-
gies to perform safe, reliable and flexible navigation. An overview of other
addressed multi-robot tasks (such as “co-manipulation and transportation” and
“exploration under uncertainty”) will also be briefly presented.

A general conclusion and prospects are given at the end of the book.
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