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Preface

In recent years, fractional-order partial differential equation models have been
proposed and investigated in many research fields, such as fluid mechanics,
mechanics of materials, biology, plasma physics, finance, chemistry and so
on. Fractional-order differential equations, such as fractional Fokker-Plank
equation, fractional nonlinear Schodinger equation, fractional Navier-Stokes
equation, fractional quasi-geostrophic equation, fractional Ginzburg-Landau
equation and fractional Landau-Lifshitz equation have clear physical back-
grounds and opened up related new research fields. In fact, some mathemati-
cians (such as L’Hopital, Leibniz, Euler) began to consider how to define the
fractional derivative as early as the end of the 17th century. In 1870s, Rie-
mann and Liouville attained the definition of fractional derivative for a given
function by extending the Cauchy integral formula,

e )/(t—r)” Lf(r)dr

where Rev > 0. Nowadays, the commonly used fractional derivative defi-

oDV f(t) =

nitions include Riemann-Liouville definition, Caputo definition, Griinwald-
Letnikov definition and Weyl definition. Kohn and Nirenberg began the
research on pseudo-differential operator in 1960s.

In recent years, we collected and summarized the researches on nonlin-
ear fractional differential equations and their numerical methods for specific
physical problems appearing in the fields of atmosphere-ocean dynamics and
plasma physics, and studied the mathematical theories of these problems.
This book introduces the latest research achievements in these areas, includ-
ing some results of US, authors and our collaborators. To give a systematic
understanding of fractional problems to our readers, we also introduce some
basic concepts of the fractional calculus, their algorithms and basic prop-
erties, particularly, some numerical methods for fractional differential equa-
tions. The aim of this book is to show some recent developments in this
research field for readers who are interested in this topic. Our expectation is
that the readers, who want to engage in this field, can access to the frontier
of this study after reading this book, and thus make certain progress.

Due to limited time and knowledge, errors and inadequacies are inevitable.
Any suggestions and comments are welcome. Last but not least, we sincerely
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thank for the seminar members of Institute of Applied Physics and Compu-
tational Mathematics. We also thank Professor W. Chen and his team in
Hohai University who translated the Chinese version into English of the first
version, which reduced our burden of translation. We need to express our

gratitude to all those unnamed as well.

December 1, 2013
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Chapter 1
Physics Background

Fractional differential equations have profound physical backgrounds and
rich related theories, and are noticeable in recent years. They are equa-
tions containing fractional derivative or fractional integrals, which have ap-
plied in various disciplines such as physics, biology and chemistry. More
specifically, they are widely used in dynamical systems with chaotic dy-
namical behavior, quasi-chaotic dynamical systems, dynamics of complex
material or porous media and random walks with memory. The purpose
of this chapter is to introduce the origin of the fractional derivative, and
then some physical backgrounds of fractional differential equations. Due to
space limitations, this chapter only gives some brief introductions. Even
so, these are sufficient to show that the fractional differential equations, in-
cluding fractional partial differential equations and fractional integral equa-
tions, are widely employed in various applied fields. However, further mathe-
matical theories and numerical algorithms of fractional differential equations
need to be studied. Interested readers can refer to more monographs and

literatures.

1.1 Origin of the fractional derivative

The concepts of integer order derivative and integral are well known. The
derivative d"y/dz™ describes the changes of variable y with respect to variable
x, supported by profound physical backgrounds. Now the problem is how to
generalize n into a fraction, even a complex number.

The long-standing problem can be traced back to the letter from L’Hopital
to Leibniz in 1695, in which it is asked like what the derivative d"y/dz"
is when n = 1/2. In the same year, the derivative of general order was
mentioned in the letter from Leibniz to J. Bernoulli as well. The problem
was also considered by Euler(1730), Lagrange(1849) et al, who gave some
relevant insights. In 1812, by using the concept of integral, Laplace provided
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a definition of fractional derivative. When y = 2™, using the gamma function,

d™y I'(m+1) _
RS S S —— > i
dzn I‘(m—-n—l—l)m =T, L)

was derived by Lacroix, who gives

dl/Zy B 2\/5
m - ﬁ’ (1-1-2)

1
when y = x and n = 2 This is consistent with the Riemann-Liouville

fractional derivative in the present.

Soon later, Fourier (1822) gave the definition of fractional derivative
through the Fourier transform. The function f(x) can be expressed as a
double integral

f@)=gn [ [ fcostle - n)dca.

and
n

d 1
o cosé(z —y) = £ cos (f(x —-y)+ 5””) .
By replacing n with v, and calculating the derivative under the integral sign,
one can generalize the integer order derivative into the fractional order deriva-
tive ’

dl/

dav

1 f* [ 1
1@ =5z [ [ 1w cos (6o —v)+ zum) decy
2% J_se J_ss 2
Consider the Abel integral equation

- wx_ -1/2
k_/o( 812 f(t)dt, (1.1.3)

where f is to be determined. The right-hand side defines a definite integral of

—-1/2
fractional integral with order 1/2. Abel wrote ﬁh f(z) for the right-
2
1/2
hand component, then a%k = y/nf(x), which indicates that the fractional
&

derivative of a constant is no longer zero.

In 1930s, Liouville, possibly inspired by Fourier and Abel, made a series
of work in the field of fractional derivative, and successfully applied them
into the potential theory. Since

m_axr __ M, ax
D™e%* = a™e”",
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the order of the derivative was generalized to be arbitrary by Liouville (v can
be a rational number, an irrational number, even a complex number)

D¥e = g¥e’*, (1.1.4)

If a function f can be expanded into an infinite series

[ <]

) = che“"’, Rea, > 0, (1.1.5)

n=0

its fractional derivative can be obtained as
o0
D" f(z) = Z N (1.1.6)
n=0

How can we obtain the fractional derivative if f cannot be written in the
form of equation (1.1.5)? Liouville probably had noticed this problem, and
he gave another expression by using the Gamma function. In order to make
use of the basic assumptions (1.1.4), noting that

o0
I :/ u* le ®"du = z7°I'(a),
0

one then obtains

DYz ¢ = (_1) / ua+u—1e—a:udu
I(a) Jo

STHEH), a0 yui (LL7)
I(a)

So far, we have introduced two different definitions of fractional deriva-
tives. One is the definition (1.1.1) with respect to *(a > 0) given by Lacroix,
the other is the definition (1.1.7) with regard to z~*(a > 0) given by Liouville.
It can be seen that, Lacroix’s definition shows that the fractional derivative

of a constant z° is no longer zero. For instance, when m = 0,n = 2
a2 o TQA) _yp_ 1

However, in Liouville’s definition, since I'(0) = oo, the fractional derivative of
a constant is zero (despite Liouville’s assumption a > 0). As far as which of
the two definitions is the correct form of fractional derivative, Willian Center
pointed out it can be attributed to how to determine d”z°/dz”; and as De
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Morgan indicated (1840), both of them may very possibly be parts of a more
general system.

The present Riemann-Liouville’s definition (R-L) of fractional derivative
may be derived from N. Ya Sonin(1869) whose starting point was the Cauchy
integration formula, from which the n** derivative of f can be defined as

D f(z) = / —Lg))nﬁdg. (1.1.9)

T 2mi Jo (E-2

Using contour integration, the following generalization can be obtained (in
which, Laurent’s work were contributed!)

DV f(x) = ‘17(1,7) /z(x —t)"1f(t)dt, Rev >0, (1.1.10)

where the constant ¢ = 0 is commonly used. It is known as the Riemann-
Liouville fractional derivative, i.e.,

a" fls) = f‘(l_y)- /Om(:n —t)*"1f(t)dt, Rev>0. (1.1.11)

In order to make the integral convergent, a sufficient condition is f(1/z) =
O(z'~¢),e > 0. An integrable function with this property is often referred
to as belonging to the function of the Riemann class. When ¢ = —o0,

~o D" f(z) = ﬁly—) /;(a: —t)*"1f(t)dt, Rev >0. (1.1.12)

In order to make the integral convergent, a sufficient condition is when z —
00, f(—=z) = O(z~¥~¢)(e > 0). An integrable function with this property
is often referred to as belonging to the function of the Liouville class. This
integral also satisfies the following exponential rule

eD#cD;¥ f(z) = DZH7V f(z).

When f(z) = z%(a > —1), v > 0, from the equation (1.1.11), it is easy

to get
F(a + 1) a+v

D—'V a =
0¥z & = Patv+1)”
By using the chain law, it has D[D~" f(z)] = D'~ f(z), then one can obtain
I(a+1) _
Diz = ———z*7%, 0 <1 > —1.
0Ly F(G—I/+1)$ ) <v , a

1
Especially, when f(z) =z, v = 2 Lacroix’s equation (1.1.2) can be recov-

ered; when f(z) =2%=1, v = 3 then the equation (1.1.8) can be recovered
as well.
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In addition, the Weyl’s definition of fractional integral is frequently used
now that

W fz) = f(iy—) / T(t—z)ft)dt, Rev>o0. (1.1.13)

Using the R-L’s definition of fractional derivative (1.1.12), and taking the

transform ¢ = —7, one obtains

—ec " flz) = —ﬁ /_z(a; + 1)L f(=7)dT.

Then taking the transform z = —§&, one derives the following equation
1 1
—oD”2f(=6) = — £y dr.

Let f(—€) = g(&), then the right end of Weyl’s definition (1.1.13) can be
recovered.

1.2 Anomalous diffusion and fractional advection-
diffusion

Anomalous diffusion phenomena are ubiquitous in natural science and social
science. In fact, many complex dynamical systems often contain anomalous
diffusion. Fractional kinetic equations are usually an effective method to de-
scribe these complex systems, including diffusion type, diffusive convection
type and Fokker-Planck type of fractional differential equations. Complex
systems typically have the following characteristics. Firstly, the system typ-
ically contains a large diversity of elementary units. Secondly, strong in-
teractions exist among these basic units. Thirdly, the anomalous evolution
is non-predictable as time evolves. In general, the time evolution of, and
within, such systems deviates from the corresponding standard laws. These
systems are now applied in a large number of practical problems across dis-
ciplines such as physics, chemistry, engineering, geology, biology, economics,
meteorology, and atmospheric. We will not give a systematic introduction of
anomalous diffusion or fractional advection diffusion, but display some frac-
tional differential equations for complex systems. We recommend the readers
who are interested for more related monographs.

In the classical exponential Debye mode, the relaxation of the system
usually satisfies the relation ®(t) = ®¢exp(—t/7). However, in complex
systems, it often satisfies the exponential Kohlrausch-Williams-Watts rela-
tion ®(t) = ®gexp(—(t/7)*) for 0 < a < 1, or the asymptotic power law
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®(t) = ®o(1 +t/7)~™ for n > 0. In addition, the conversion from the ex-
ponential to power-law relationship can be observed in practical systems.
Similarly, in many complex systems, the diffusion process no longer follows
the Gauss statistics. Then, the Fick’s second law is not sufficient to describe
the certain transport behavior. In the classical Brownian motion, linear de-
pendence of the time-mean-square displacement can be observed as

(@*(t)) ~ Kat. (1.2.1)

However, in anomalous diffusion, the mean-square displacement is no longer a
linear function of time. The power-law dependence is common, i.e., (z2(t)) ~
K,t%. Based on the index a of the anomalous diffusion, different anomalous
diffusion types can be defined. When a = 1, it is normal diffusion process.
When 0 < a < 1, it is sub-diffusion process or dispersive, slow diffusion
process with the anomalous diffusion index. When o > 1, it is ultra-diffusion
process or increased, fast diffusion process.

There have been extensive research results on anomalous diffusion process
with or without an external force field situation, including:

(1) fractional Brownian motion, which can be traced back to Benoit Man-
delbrot [153,154];

(2) continuous-time random walk model;

(3) generalized diffusion equation [28];

(4) Langevin equation;

(5) generalized Langevin equation;
Among them, (2) and (5) appropriately describe the memory behavior
of the system, and the specific form of the probability distribution function
[162], however, it is insufficient to directly consider the role of the external
force field, boundary value problem or the dynamics in the phase space.

1.2.1 The random walk and fractional equations

The following is a brief description of the random walk and the fractional
diffusion equation. Considering the one-dimensional random walk, the test
particle is assumed to jump randomly to one of its nearest neighbouring sites
in discrete time interval At, with lattice constant Az. Such a system can be
described by the following equation

1 1
W;(t+ At) = 5 i—1(t) + §Wj+1(t),

where W;(t) represents the probability of the particle located at site j, at

1 . -
the time ¢, the coefficient 5 means the walks of the particle are isotropic, i.e.



1.2  Anomalous diffusion and fractional advection-diffusion 7

the probability of jumping to the left or right is % Consider the continuum

limit At — 0, Az — 0, using the Talyor series expansion, we can get

oW
ot

oW  (Az)? 0°W

W;(t + At) = W;(t) + At + 0((At)?),

. — kil 3
Wix1(t) = W(z,t) + Az e + 2 B2 + O((Az)?),
which leads to the diffusion equation
oW 82 : (Az)®
B S Higat et K=, dm A< (123

Based on simple knowledge of partial differential equations, the solution of
the equation (1.2.2) can be expressed as
2

1 x
—s el 1.2.3
vV 4J'[K1t S5 ( 4K1t) ( )

The function (1.2.3) is often called propagator, i.e. the solution of the equa-
tion (1.2.2) with initial data Wp(z) = d(z). The solution of equation (1.2.2)
satisfies the exponential decay law

W (k,t) = exp(—K1kt), (1.2.4)

W(z,t) =

for individual mode in Fourier phase space.

For anomalous diffusion, we firstly consider the continuous-time random
walk model. It is mainly based on the idea: for a given jump, the jump length
and waiting time between two adjacent jumps are determined by a probability
density function ¥ (z,t). The respective probability density functions of the
jump length and waiting time are

Az = /0 T T /_ ~ Wz, t)dz. (1.2.5)

Here A(z)dx can be understood as the probability of the jump length in the
interval (z,z + dz), and w(t)dt is the probability of a jump waiting time
in time slice (¢,t + dt). It is easy to see that if the jump time and jump
length are independent, then (z,t) = w(¢)A\(z). Different continuous-time
random walk processes can be determined by the converging or diverging

[e]
characteristics of the waiting time T = / w(t)tdt accompanied with the
0

o0

variance of the jump length ¥£2 = / Mz)z?dz. Now, the following equation
can depict the continuous-time random walk model that

nlay t) = /:’0 dz’ /000 dt'n(a’, ' )(x — 2’ t — ') + 8(z)d (), (1.2.6)
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which links the probability density function n(z,t) of the particle arrived at
the site x at time t and the event of the particle arrived at the site z’ at time
t’. The second item on the right hand side represents the initial condition.
Thus, the probability density function W (z,t) of the particle at the site = at
time t can be expressed as

W(ac,t)=/0tdt’n(:c,t')\1'(t—t’), ‘Il(t)zl—/otdt'w(t’). (1.2.7)

The items of the equation (1.2.7) have the meanings: 7(z,t’) means the
probability density function of the particle at the site z at time ¢, and
¥(t — t') is the probability density function of the particle which does not
leave until time ¢, thereby W (z,t) is the the probability density function of
the particle at the site x at time ¢. By using the Fourier transforms and
Laplace transform, W (z, t) satisfies the following algebraic relation [126]

1—w(u) Woy(k)
i— 10(’9, u) '
where W (k) represents the Fourier transform of the initial value Wy(z).

When w(t) and A(t) are independent, i.e. ¥(z,t) = w(t)A(z), and T
and Y2 are finite, the continuous-time random walk model is asymptoti-

W(k,u) = (1.2.8)

cally equivalent to the Brownian motion. Consider the probability den-
sity function of the Poisson waiting time w(t) = 7~ !exp(—t/7), and T =
7, and the Gauss probability density function of the jump length \(z) =
(4no?)~1/2 exp(—x2/(40?)), £? = 20%2. The Laplace transform and the
Fourier transform have the following forms respectively, w(u) ~ 1—ur+O(7?)
and A\(k) ~ 1 — 02k? + O(k*).

Consider a particular case: fractional time random walk, which leads to
the fractional diffusion equation of describe the sub-diffusion process. In
this model, the characteristic waiting time 7" is divergent and the variance
%2 of jump length is finite [196]. Then, we introduce the probability density
function of the long-tail waiting time, whose asymptotic behavior and Laplace
transform respectively satisfy, w(t) ~ Aq(7/t)!7 and w(u) ~ 1 — (ur)®, but
the specific form of w(t) is insignificant. Taking the probability function A(z)
of Gauss jumps into account, we can obtain the probability density function

[(Wo(k)/u]

W = T Ko

(1.2.9)

Using the Laplace transform of the fractional integral [16,69,165,175,195]

Z{oD; "W (z,t)} = uPW(z,u), p=>0,



