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Early modern humans had a problem with brain size. These Stone Age
humans probably had very high maternal and infant mortality, even
higher than in the so-called primitive societies of modern humans, thanks
to their larger crania. The expansion of the cerebral hemispheres had also
made it necessary for babies to be born at a more immature stage than
modern humans are. What if an increase in the size of the cerebellum,
which was relatively small in Cro-Magnon Man, could improve the ef-
ficiency of the human brain, allowing the cerebral hemispheres and the
diameter of the cranium to become slightly smaller, while maintaining
the competitive edge provided by human intelligence? Although we do
not know if this in fact did happen, it is consistent with what we do know
(Weaver 2005). Such an improvement could have allowed more infants,
and mothers, to survive childbirth while also allowing infants to be more
mature at birth.

The cortex of the cerebellum is a huge, multilayered sheet of neurons
that is folded like an accordion. The folds are compressed into a structure
resembling a “little brain,” which lies behind and beneath the cerebral
hemispheres. But it is not really so little. In humans, if all of its folds were
flattened out, the cerebellar cortex would extend for more than 1 m from
front to back (Braitenberg & Atwood 1958). Several million nerve fibers
exit the cerebellum (Glickstein et al. 2011). What is the function of all of
this processing power and connectivity? What does the cerebellum do? In
this book, I will argue that the cerebellum is a supplementary processing
device that boosts the computing power of the cerebral cortex—and that
it can be used for essentially any task.

It has been said that people born without a cerebellum are nearly nor-
mal, but this is a myth. In fact, the few patients with “cerebellar agenesis”
have symptoms resembling severe cerebral palsy. In all known cases, their
deficits include severe motor disability and profound mental retardation.
What is more, the cerebellum is not completely lacking in any of them;
some part of it always remains (Glickstein 1994). In fact, the number of
cases where the cerebellum has been confirmed to be completely lacking
in an individual who survived infancy is zero.

Individuals can survive without most of their cerebellum, but they need
a lot of help. Also, we can walk and talk without parts of the cerebellum,
just not very well. The cerebral cortex is plastic, and can learn without
the cerebellum, and even (to some extent) can compensate for its absence.
But having a cerebellum allows us to speed up, perfect, and extend our
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Introduction

behavioral repertoire. For animals in the wild (and even occasionally for
modern humans), speed is absolutely crucial for survival. Good motor
performance can be a matter of life and death.

The first goal of this book is to give a general overview of cerebellar
function: what it does, and how it does it. Section I will focus on how the
cerebellum works. Section II will show how the cerebellum participates
in motor learning. Section Il will describe the contribution of the cerebel-
lum to precision, timing, and coordination of movement. Motor control is
one of the most complicated things that animals—including humans—do,
and the motor functions of the cerebellum allow us to interact promptly
and successfully with our environment.

But the cerebellum also has other functions that have nothing to do with
motor control. As we will see in Section 1V, these include certain aspects
of cognition: language, working memory, and attention as well as certain
emotional and social functions. More cerebellar functions almost certainly
remain to be discovered. There have been difficulties obtaining evidence
for nonmotor cerebellar functions, mostly because we are talking about
faculties that are exclusively human. The quality of the evidence is im-
proving rapidly, but many clinicians and neuroscientists still believe that
“the cerebellum is for motor control.” My second goal is to demonstrate
that this view should be changed.
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Structure and Physiology

ANATOMY OF THE CEREBELLAR CORTEX

Even the most primitive vertebrates have a cerebellum. For example, the
cyclostomes (hagfish and lampreys) have a cerebellum, even though—
like other fish—they do not have a cerebral cortex.

The cerebellum may have first appeared as a computational device for
the lateral line systems of fish.Lateral lines are rows of tiny hair cells
on the skin of fish that detect rocks, fish, and other solid objects. With-
out their lateral line organs, fish collide with obstacles (Sarnat & Netsky
1974). While swimming alongside a wall, for example, the fish’s move-
ment is continually adjusted to maintain a constant distance, based on
signals from the lateral lines. Both the lateral line nerves and the central
nuclei associated with them send axonal projections into the cerebellum.
The purpose of the first cerebellum may have been to carry out computa-
tions that allowed fish to use the sensory feedback from their lateral lines
to guide swimming.

The cerebellum of cyclostomes works with a very simple structure. It
contains only two types of neurons: the tiny and very numerous granule
cells, and the large Purkinje cells (P-cells), with their extensive dendritic
arbors. The dendrites of each P-cell branch within a flattened, nearly pla-
nar field in the molecular layer. Granule cells terminate on and excite the
P-cells. P-cells are the only neurons whose axons leave the cortex. Unlike
most other large projection neurons of the brain, they inhibit their target
neurons.

Both granule cells and P-cells receive afferent input. Granule cells are
innervated by the mossy fibers, so called because their axon terminals
resemble miniature branches and leaves of moss. In cyclostomes, mossy
fibers originate from the lateral line and vestibular nuclei. The P-cells have
direct input from the ivy-like climbing fibers, whose cell bodies are lo-
cated in the inferior olivary nuclei of the brainstem.

Throughout vertebrate evolution, the cerebellar cortex has kept these
primitive features and added more. In humans, the cerebellar cortex has
three layers (Figure 1.1): the molecular layer, which is a surface layer

The Cerebellunt: Learning Movement, Language, and Social Skills, First Edition. Dianne M. Broussard.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Figure 1.1 Human cerebellar cortex. A P-cell, a climbing fiber, and a basket cell are shown in the
sagittal plane. Golgi and granule cells and mossy fibers are shown in the coronal plane. The dashed
lines indicate the P-cell layer. The axon of the basket cell is shown extending in the sagittal plane and
surrounding the cell bodies of several P-cells. See text for other details.

containing mostly axons; the P-cell layer; and the granular layer. The
granular layer contains between 10'° and 10" granule cells in humans
(Braitenberg & Atwood 1958).!

The axons of granule cells extend from the granule cell layer, through
the P-cell layer, and into the molecular layer where they bifurcate, each
branch making a right-angle turn. The branches, which are thin and un-
myelinated, are called parallel fibers. They extend for several millimeters,
terminating extensively on the P-cell dendrites and releasing glutamate.
Input from the mossy fibers can excite P-cells through the granule cells
and parallel fibers. The rectangular lattice formed by the P-cell dendritic
arbors and the parallel fibers suggests an efficient device for processing
and/or storing inforntation.

IThis astounding number represents most of the neurons in the brain. Al-
though it has been questioned, these authors were very careful in their
methodology.
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The climbing fibers originate from the inferior olive. In general, each P-
cell receives input from only one climbing fiber, although there are excep-
tions (Nishiyama & Linden 2004). Climbing fibers usually extend through
the entire thickness of the molecular layer, twining around the dendrites
of the P-cell.

In mammals, the cerebellar cortex contains inhibitory interneurons, that
form another link between the granule cells and the P-cells. These are the
basket cells and the stellate cells. The basket cell is named for the struc-
ture of its terminal, which is a giant synapse, also known as the “pinceau”.
One pinceau surrounds the soma of each P-cell, secreting GABA and in-
hibiting the initial segment of the axon as well as the soma itself. The long
axons of the basket cells extend parallel to the P-cell dendritic arbors, at
right angles to the parallel fibers. The discharge pattern of a basket cell
effectively sculpts the discharge patterns of each P-cell that it innervates.
Stellate cells also inhibit P-cells, but they terminate on the dendrites and
are less effective.

Basket cells and stellate cells also receive collaterals from the climbing
fibers. This means that each excitatory input to the P-cell is accompanied
by an inhibitory input that is derived from it (Figure 1.2).

Only one type of inhibitory interneuron, the very large Golgi cell, ter-
minates on granule cells. The Golgi cell closes an inhibitory feedback
loop. As a result, like P-cells, granule cells receive both excitatory and
inhibitory inputs.

In addition to mossy fibers, which are glutamatergic and terminate ex-
clusively in the granular layer, and climbing fibers (also glutamatergic),
input pathways to the cerebellum arise from the locus coeruleus (adren-
ergic neurons) and raphe nuclei (serotonergic neurons). These axons ter-
minate directly on P-cells.

GoC
a GrC

/Tl

to CF

DCN ‘ \‘

Figure 1.2 A simplified diagram of the connections among neurons in the cerebellar
cortex. Black cells and round terminals are inhibitory. Gray cells and arrows are excita-

tory. PC, Purkinje cell; BC, basket or stellate cell; GoC, Golgi cell; GrC, granule cell; MF,
mossy fiber; CF, climbing fiber; DCN, deep cerebellar nucleus.

BC



6

Structure and Physiology

PHYSIOLOGY OF THE CEREBELLAR CORTEX

What do all of these parts do? Over the years, neurophysiologists have
carried out hundreds of studies of the cerebellar cortical circuit, with the
goal of answering this question. At least one important principle has held
up over time: the close relationship between the vine-like climbing fiber
and the P-cell is of primary importance to cerebellar function. Because
the climbing fiber has a large number of glutamatergic terminals on the
P-cell, each action potential in the climbing fiber strongly depolarizes the
dendritic arbor. This strong synaptic activation, along with a “resurgent”
sodium current (Raman & Bean 1997), results in an action potential in the
P-cell that has not one but several peaks (the “complex spike”). On the
cellular level, complex spikes are necessary for cerebellar learning. In at
least some cases, climbing fibers bring information about errors into the
cortex.

In adult mammals, most P-cells are innervated by only one climbing
fiber, and in fact, this pattern of innervation is required for certain kinds of
learning (Kimpo & Raymond 2007). But climbing fibers fire infrequently,
usually evoking 10 or fewer complex spikes per second. Meanwhile, the
P-cell fires “simple spikes” (ordinary action potentials) steadily at up to
100 spikes per second or more, allowing it to encode rapid sensory and
motor events. The steady stream of simple spikes is the main output of
the cerebellar cortex, but as we shall see, complex spikes can affect the
stream.

Parallel fibers: many weak inputs

The sheer number of synapses that connect granule cell axons, especially
the long parallel fibers, with P-cells suggests that the mossy-fiber input
pathway must be important. There are roughly 150,000 synapses from
parallel fibers on each P-cell, and we each have over 10 million P-cells.
This arrangement provides enormous computational power. It has the po-
tential to encode a tremendous number of different components of motor
patterns, for example.

But despite these impressive numbers, it is clear that the parallel fiber—
P-cell (PF-PC) circuit is not the only contributor to cerebellar signal
processing in mammals, and it may not even be the most important con-
tributor. For one thing, P-cells can generate simple spikes at a steady
rate on their own, without any synaptic input (Hounsgaard & Yamamoto
1979). This “spontaneous” firing likely occurs because the resurgent
sodium current does not completely inactivate. As a result, the resting
potential of the P-cell is above the threshold for firing (Raman & Bean
1997). Spontaneous firing can be modulated by the many synaptic inputs
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to the P-cell, but inhibitory inputs are likely to be more useful for this kind
of modulation than excitatory ones.?

Climbing fibers and inhibitory interneurons

Another important contributor to P-cell discharge patterns is the
climbing-fiber input. At the same time that it causes complex spikes, the
climbing-fiber input actually decreases the rate of simple-spike firing by
the same P-cell (Montarolo et al. 1982). In most behavioral paradigms,
complex spikes and simple spikes show opposing responses, with com-
plex spikes decreasing while simple spikes increase their discharge rates,
and vice versa. In fact, the pattern of complex-spikes seems to de-
termine the simple-spike responses of some P-cells to sensory stimuli
(Barmack & Yakhnitsa 2003). Although we do not know exactly how
this works, evidence indicates that at least two mechanisms may con-
tribute: the activation of calcium-activated potassium channels in P-cells
(McKay et al. 2007), and the activation of stellate and basket cells (Bar-
mack & Yakhnitsa 2011). In at least some cerebellar regions, the stellate
and basket cells control whether P-cells will increase or decrease their
simple-spike firing rates during particular sensory stimuli (Barmack &
Yakhnitsa 2008).

Both granule cells and P-cells do more than just add up their synap-
tic inputs. P-cells sometimes end up responding to sensory and motor
events in a similar way to the mossy fibers, but sometimes they do not.
In fact, the responses of P-cells and mossy fibers can end up being op-
posites (Barmack & Yakhnitsa 2008). This situation is not as strange as
it first seems. Each parallel fiber provides one or a few relatively minor
inputs to the P-cell. These inputs arrive on the dendritic spines, which
are electrically quite distant from the spike generator of the P-cell. Fur-
thermore, the P-cell is spontaneously active, so after each spike it may
reach threshold again within a few milliseconds, whether or not it re-
ceives any depolarizing synaptic input. On the other hand, inhibitory
inputs can sculpt the spontaneous activity of the P-cell. The basket cell
actually terminates on the soma and the proximal axon, and override
the more distal parallel-fiber inputs. It is clear that the basket cell is
a key player in determining how P-cells will respond to sensory and
motor events,

This is because inhibitory inputs open (usually) chloride channels, which
shunts postsynaptic excitatory currents and also intrinsically-generated cur-
rents. This is roughly analogous to a short in electrical wiring and has a simi-
larly powerful effect.



