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INTRODUCTION TO MODERN DIGITAL HOLOGRAPHY
With MATLAB®

Get up to speed with digital holography with this concise and straightforward
introduction to modern techniques and conventions.

Building up from the basic principles of optics, this book describes key tech-
niques in digital holography, such as phase-shifting holography, low-coherence
holography, diffraction tomographic holography, and optical scanning holography.
Practical applications are discussed, and accompanied by all the theory necessary
to understand the underlying principles at work. A further chapter covers advanced
techniques for producing computer-generated holograms. Extensive MATLAB
code is integrated with the text throughout and is available for download online,
illustrating both theoretical results and practical considerations such as aliasing,
zero padding, and sampling.

Accompanied by end-of-chapter problems, and an online solutions manual
for instructors, this is an indispensable resource for students, researchers, and
engineers in the fields of optical image processing and digital holography.

TING-CHUNG POON is a Professor of Electrical and Computer Engineering at
Virginia Tech, and a Visiting Professor at the Shanghai Institute of Optics and Fine
Mechanics, Chinese Academy of Sciences. He is a Fellow of the OSA and SPIE.

JUNG-PING LIU is a Professor in the Department of Photonics at Feng Chia
University, Taiwan.
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Preface

Owing to the advance in faster electronics and digital processing power, the past
decade has seen an impressive re-emergence of digital holography. Digital
holography is a topic of growing interest and it finds applications in three-
dimensional imaging, three-dimensional displays and systems, as well as bio-
medical imaging and metrology. While research in digital holography continues
to be vibrant and digital holography is maturing, we find that there is a lack of
textbooks in the area. The present book tries to serve this need: to promote and
teach the foundations of digital holography. In addition to presenting traditional
digital holography and applications in Chapters 1-4, we also discuss modern
applications and techniques in digital holography such as phase-shifting holog-
raphy, low-coherence holography, diffraction tomographic holography, optical
scanning holography, sectioning in holography, digital holographic microscopy
as well as computer-generated holography in Chapters 5-7. This book is geared
towards undergraduate seniors or first-year graduate-level students in engineer-
ing and physics. The material covered is suitable for a one-semester course in
Fourier optics and digital holography. The book is also useful for scientists and
engineers, and for those who simply want to learn about optical image processing
and digital holography.

We believe in the inclusion of MATLAB® in the textbook because digital
holography relies heavily on digital computations to process holographic data.
MATLAB® will help the reader grasp and visualize some of the important
concepts in digital holography. The use of MATLAB® not only helps to illustrate
the theoretical results, but also makes us aware of computational issues such as
aliasing, zero padding, sampling, etc. that we face in implementing them. Never-
theless, this text is not about teaching MATLAB®, and some familiarity with
MATLAB® is required to understand the codes.

The MATLAB® codes included in this book are all available to download from
the publisher at www.cambridge.org/digitalholography.
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1

Wave optics

1.1 Maxwell’s equations and the wave equation

In wave optics, we treat light as waves. Wave optics accounts for wave effects such
as interference and diffraction. The starting point for wave optics is Maxwell’s
equations:

V-D=p, (1.1)
VB =0, (1.2)
OB
VXE=—, 1.3
X A (1.3)
oD
VXH=J=JC—I—5t—, (1.4)

where we have four vector quantities called electromagnetic (EM) fields: the
electric field strength E (V/m), the electric flux density D (C/m?), the magnetic
field strength H (A/m), and the magnetic flux density B (Wb/m?). The vector
quantity Jc and the scalar quantity p, are the current density (A/m”) and the
electric charge density (C/m3 ), respectively, and they are the sources responsible
for generating the electromagnetic fields. In order to determine the four field
quantities completely, we also need the constitutive relations

D = ¢E, (1.5)
and

B = uH, (1.6)

where ¢ and u are the permittivity (F/m) and permeability (H/m) of the medium,
respectively. In the case of a linear, homogenous, and isotropic medium such as in
vacuum or free space, ¢ and u are scalar constants. Using Eqgs. (1.1)—~(1.6), we can

1



2 Wave optics

derive a wave equation in E or B in free space. For example, by taking the curl of
E in Eq. (1.3), we can derive the wave equation in E as

FE  alc 1
VE-pe— =p—+-Vp, 1.7
where V> = &%/0x” + 0%/0y* + &°107% is the Laplacian operator in Cartesian
coordinates. For a source-free medium, i.e., Jc = 0 and p, = 0, Eq. (1.7) reduces
to the homogeneous wave equation:

1 &’E
VE- —— =0. 1.8
v2 or? (1.8)
Note that v = 1/,/ue is the velocity of the wave in the medium. Equation (1.8) is
equivalent to three scalar equations, one for every component of E. Let

where a,, a,, and a, are the unit vectors in the x, y, and z directions, respectively.
Equation (1.8) then becomes
(az *

&
=2 (B + Eyay + Ez). (1.10)

2R o e 2 382

) (E«ay + Eyay + E.a;) =
Comparing the a,-component on both sides of the above equation gives us

O°E, §&+¥&_i§&
oy o2 v ot

Similarly, we can derive the same type of equation shown above for the E; and E,
components by comparison with other components in Eq. (1.10). Hence we can
write a compact equation for the three components as

Py Py Py 1y

—+5;2—+— ﬁﬁ? (l.lla)

or

1 &y

Vi ==—,
v v o2

(1.11b)
where i can represent a component, E,, E,, or E_, of the electric field E. Equation
(1.11) is called the three-dimensional scalar wave equation. We shall look at some
of its simplest solutions in the next section.



1.2 Plane waves and spherical waves 3

1.2 Plane waves and spherical waves

In this section, we will examine some of the simplest solutions, namely the plane
wave solution and the spherical wave solution, of the three-dimensional scalar wave
equation in Eq. (1.11). For simple harmonic oscillation at angular frequency
(radian/second) of the wave, in Cartesian coordinates, the plane wave solution is

w(x,y,z,t) = A exp| j(wot —koR)], (1.12)

where j = V-1, ko = koa, + koyay + ko.a, is the propagation vector, and
R = xa, + ya, + za, is the position vector. The magnitude of kg is called the
wave number and is |ko| = ko = \/kg, + kg, + ko, = wo/v. If the medium is free
space, v = c¢ (the speed of light in vacuum) and k, becomes the wave number in
free space. Equation (1.12) is a plane wave of amplitude A, traveling along the &
direction. The situation is shown in Fig. 1.1.

If a plane wave is propagating along the positive z-direction, Eq. (1.12) becomes

w(z, 1) = A exp|j(wot —koz)], (1.13)

which is a solution to the one-dimensional scalar wave equation given by
Fu_13
02 v:or’

Equation (1.13) is a complex representation of a plane wave. Since the electro-

magnetic fields are real functions of space and time, we can represent the plane
wave in real quantities by taking the real part of y to obtain

Re{w(z,1)} = Acos [(wot —koz))- (1.15)

Another important solution to the wave equation in Eq. (1.11) is a spherical wave
solution. The spherical wave solution is a solution which has spherical symmetry,
i.e., the solution is not a function of ¢ and & under the spherical coordinates shown
in Fig. 1.2. The expression for the Laplacian operator, V7, is

(1.14)

Figure 1.1 Plane wave propagating along the direction k.



4 Wave optics

-
A

Figure 1.2 Spherical coordinate system.

vl_i+gi+;i+ia_z+ﬂ)i
~ OR* ROR R’sin*0of> R*0¢*  R® 00

Hence Eq. (1.11b), under spherical symmetry, becomes

Py 20y 13y

OR* 'ROR Vo~ (1.16)
Since
R(ZY+20) _2R)
OR*  RGR OR?
we can re-write Eq. (1.16) to become
M ko) (1.17)

oR:? v o

By comparing the above equation with Eq. (1.14), which has a solution given by
Eq. (1.13), we can construct a simple solution to Eq. (1.17) as

Ry/(R.t) = A exp|j(wot = koR)],

or
V(R.1) = expl oot ~koR)]. (1.18)

The above equation is a spherical wave of amplitude A, which is one of the
solutions to Eq. (1.16). In summary, plane waves and spherical waves are some
of the simplest solutions of the three-dimensional scalar wave equation.
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1.3 Scalar diffraction theory

For a plane wave incident on an aperture or a diffracting screen, i.e., an opaque
screen with some openings allowing light to pass through, we need to find the field
distribution exiting the aperture or the diffracted field. To tackle the diffraction
problem, we find the solution of the scalar wave equation under some initial
condition. Let us assume the aperture is represented by a transparency with
amplitude transmittance, often called transparency function, given by t(x, y),
located on the plane z = 0 as shown in Fig. 1.3.

A plane wave of amplitude A is incident on the aperture. Hence at z = 0,
according to Eq. (1.13), the plane wave immediately in front of the aperture
is given by A exp(jwot). The field distribution immediately after the aperture is
wx,y,z=0,1) = At(x, y) exp(jwpt). In general, #(x, y) is a complex function that
modifies the field distribution incident on the aperture, and the transparency has
been assumed to be infinitely thin. To develop w(x, y, z = 0, f) further mathematic-
ally, we write

p(x,y.z2=0,1) = At(x, y)exp(jowot) = y,(x,y;z = 0)exp( jwot)
= Wpo(x, y)exp( jawot). (1.19)

The quantity y,o(x, y) is called the complex amplitude in optics. This complex
amplitude is the initial condition, which is given by y,o(x, y) = A X 1(x, y), the
amplitude of the incident plane wave multiplied by the transparency function of
the aperture. To find the field distribution at z away from the aperture, we model
the solution in the form of

p(x,y,z,t) =y, (x.y; z)exp(joot), (1.20)

where y,, (x, y; z) is the unknown to be found with initial condition y,o(x, y) given.
To find y,(x, y; 2), we substitute Eq. (1.20) into the three-dimensional scalar wave
equation given by Eq. (1.11a) to obtain the Helmholtz equation for y,(x, y: z),

Diffracted field ¥,(x,y;2)

1(x.)

Figure 1.3 Diffraction geometry: #(x, y) is a diffracting screen.

Incident plane wave

>

z=0
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2 2
&y, N o,
ox2  oy?

Py
- azz” +kgy, = 0. (1.21)

To find the solution to the above equation, we choose to use the Fourier transform
technique. The two-dimensional Fourier transform of a spatial signal flx, y) is
defined as

T} = Flkk) = [ pesplor-+ sopitras, (1220

and the inverse Fourier transform is

FHF(ke, ky)} = f(x,y) = 4%:2” F(ky, ky)exp(—jkx —jkyy)dky dky,  (1.22b)
where k, and k, are called spatial radian frequencies as they have units of radian
per unit length. The functions fix, y) and F(k,, k,) form a Fourier transform pair.
Table 1.1 shows some of the most important transform pairs.

By taking the two-dimensional Fourier transform of Eq. (1.21) and using
transform pair number 4 in Table 1.1 to obtain

T{ 6‘21//,, }= (“jkx)zq'lp(kx’ ky; 2)

ox?

(1.23)
rf{ % } = (= jky) " Wp (ks ky3 2),

where F{y,(x,y;2)} = W, (k. ky; z), we have a differential equation in W, (k,, k; 2)
given by

d*y 2ok
"+k5(1—~'— 2

. )\Pp =0 (1.24)

4R
subject to the initial known condition F{y,(x,y;z =0)} =¥, (Kaskyi 7 = 0) =
Woo (kx, ky). The solution to the above second ordinary differential equation is
straightforward and is given by

Wy (ke kyi 2) = Wyolkrs ky)exp [ skoy/ (1 -2/ - K2 /K)z] (1.25)
as we recognize that the differential equation of the form

d*y(z)

42 +a’y(z) =0



