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Preface

Riemannian geometry is characterized, and research is oriented towards and
shaped by concepts (geodesics, connections, curvature, ...) and objectives, in
particular to understand certain classes of (compact) Riemannian manifolds
defined by curvature conditions (constant or positive or negative curvature,
...). By way of contrast, geometric analysis is a perhaps somewhat less system-
atic collection of techniques, for solving extremal problems naturally arising
in geometry and for investigating and characterizing their solutions. It turns
out that the two fields complement each other very well; geometric analysis
offers tools for solving difficult problems in geometry, and Riemannian geom-
etry stimulates progress in geometric analysis by setting ambitious goals.

It is the aim of this book to be a systematic and comprehensive intro-
duction to Riemannian geometry and a representative introduction to the
methods of geometric analysis. It attempts a synthesis of geometric and an-
alytic methods in the study of Riemannian manifolds.

The present work is the fourth edition of my textbook on Riemannian
geometry and geometric analysis. It has developed on the basis of several
graduate courses I taught at the Ruhr-University Bochum and the University
of Leipzig. Besides several smaller additions, reorganizations, corrections (I
am grateful to J.Weber and P.Hinow for useful comments), and a systematic
bibliography, the main new features of the present edition are a systematic in-
troduction to Kdhler geometry and the presentation of additional techniques
from geometric analysis.

Let me now briefly describe the contents:

In the first chapter, we introduce the basic geometric concepts, like dif-
ferentiable manifolds, tangent spaces, vector bundles, vector fields and one-
parameter groups of diffeomorphisms, Lie algebras and groups and in par-
ticular Riemannian metrics. We also derive some elementary results about
geodesics.

The second chapter introduces de Rham cohomology groups and the es-
sential tools from elliptic PDE for treating these groups. In later chapters,
we shall encounter nonlinear versions of the methods presented here.

The third chapter treats the general theory of connections and curvature.

In the fourth chapter, we introduce Jacobi fields, prove the Rauch com-
parison theorems for Jacobi fields and apply these results to geodesics.
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These first four chapters treat the more elementary and basic aspects
of the subject. Their results will be used in the remaining, more advanced
chapters that are essentially independent of each other.

The fifth chapter treats symmetric spaces as important examples of Rie-
mannian manifolds in detail.

The sixth chapter is devoted to Morse theory and Floer homology.

The seventh chapter treats variational problems from quantum field the-
ory, in particular the Ginzburg-Landau and Seiberg-Witten equations. The
background material on spin geometry and Dirac operators is already devel-
oped in earlier chapters.

In the eighth chapter, we treat harmonic maps between Riemannian ma-
nifolds. We prove several existence theorems and apply them to Riemannian
geometry. The treatment uses an abstract approach based on convexity that
should bring out the fundamental structures. We also display a representative
sample of techniques from geometric analysis.

A guiding principle for this textbook was that the material in the main
body should be self contained. The essential exception is that we use material
about Sobolev spaces and linear elliptic PDEs without giving proofs. This
material is collected in Appendix A. Appendix B collects some elementary
topological results about fundamental groups and covering spaces.

Also, in certain places in Chapter 6, we do not present all technical details,
but rather explain some points in a more informal manner, in order to keep
the size of that chapter within reasonable limits and not to loose the patience
of the readers.

We employ both coordinate-free intrinsic notations and tensor notations
depending on local coordinates. We usually develop a concept in both no-
tations while we sometimes alternate in the proofs. Besides my not being a
methodological purist, the reasons for often prefering the tensor calculus to
the more elegant and concise intrinsic one are the following. For the analytic
aspects, one often has to employ results about (elliptic) partial differential
equations (PDEs), and in order to check that the relevant assumptions like
ellipticity hold and in order to make contact with the notations usually em-
ployed in PDE theory, one has to write down the differential equation in
local coordinates. Also, recently, manifold and important connections have
been established between theoretical physics and our subject. In the physical
literature, tensor notation is usually employed, and therefore familiarity with
that notation is necessary to explore those connections that have been found
to be stimulating for the development of mathematics, or promise to be so
in the future.

As appendices to most of the paragraphs, we have written sections with
the title “Perspectives”. The aim of those sections is to place the material in
a broader context and explain further results and directions without detailed
proofs. The material of these Perspectives will not be used in the main body
of the text. At the end of each chapter, some exercises for the reader are given.



Preface X

We assume of the reader sufficient perspicacity to understand our system of
numbering and cross-references without further explanation.

The development of the mathematical subject of Geometric Analysis,
namely the investigation of analytical questions arising from a geometric
context and in turn the application of analytical techniques to geometric
problems, is to a large extent due to the work and the influence of Shing-
Tung Yau. This book, like its previous editions, is dedicated to him.

Jirgen Jost
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1. Foundational Material

1.1 Manifolds and Differentiable Manifolds

A topological space is a set M together with a family O of subsets of M
satisfying the following properties:

(l) 2,2€0=>0N0HeO
(ii) For any index set A :
('Qa)aeA cO= U -Qa €O
a€A

(iii) 0MeO

The sets from O are called open. A topological space is called Hausdorff if
for any two distinct points p;, p; € M there exists open sets £2;, 25 € O with
P1 € 21,p2 € 22,021 N 25 = 0. A covering (£24)aca (A an arbitrary index
set) is called locally finite if each p € M has a neighborhood that intersects
only finitely many §2,. M is called paracompact if any open covering possesses
a locally finite refinement. This means that for any open covering (24)aca
there exists a locally finite open covering (2;)sep with

VBeEB3a€ A: 25 C 12,.

A map between topological spaces is called continuous if the preimage of any
open set is again open. A bijective map which is continuous in both directions
is called a homeomorphism.

Definition 1.1.1 A manifold M of dimension d is a connected paracom-
pact Hausdorff space for which every point has a neighborhood U that is
homeomorphic to an open subset 2 of R%. Such a homeomorphism

z:U— (2

is called a (coordinate) chart.
An atlas is a family {U,,z,} of charts for which the U, constitute an
open covering of M.

Remarks.
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1) A point p € U, is determined by z,(p); hence it is often identified
with z4(p). Often, also the index « is omitted, and the components
of z(p) € R? are called local coordinates of p.

2) Any atlas is contained in a maximal one, namely the one consisting
of all charts compatible with the original one.

Definition 1.1.2 An atlas {U,,z,} on a manifold is called differentiable if
all chart transitions

zg0z;" 1 2a(Ua NUg) — x5(Us NUs)

are differentiable of class C* (in case U,NUp # (). A maximal differentiable
atlas is called a differentiable structure, and a differentiable manifold of di-
mension d is a manifold of dimension d with a differentiable structure. From
now on, all atlases are supposed to be differentiable. Two atlases are called
compatible if their union is again an atlas. In general, a chart is called com-
patible with an atlas if adding the chart to the atlas yields again an atlas. An
atlas is called maximal if any chart compatible with it is already contained
in it.

Remarks.

1) Since the inverse of zg o z ! is x4 0 :1:51, chart transitions are differ-
entiable in both directions, i.e. diffeomorphisms.

2) One could also require a weaker differentiability property than C'°.

3) It is easy to show that the dimension of a differentiable manifold is

uniquely determined. For a general, not differentiable manifold, this
is much harder.

4) Since any differentiable atlas is contained in a maximal differentiable
one, it suffices to exhibit some differentiable atlas if one wants to
construct a differentiable manifold.

Definition 1.1.3 An atlas for a differentiable manifold is called oriented if
all chart transitions have positive functional determinant. A differentiable
manifold is called orientable if it possesses an oriented atlas.

It is customary to write the Euclidean coordinates of R%, 2 C R¢ open,
as
z=(z},...,z%), (1.1.1)

and these then are considered as local coordinates on our manifold M when
x:U — {2 is a chart.

Ezample.
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1.1 Manifolds and Differentiable Manifolds 3

+1 .
The sphere S™ := {(z!,...,z"*!) € R*+! : n{,‘l (z9)?2 = 1} is a
differentiable manifold of dimension n. Charts can be given as follows:
On U; := S™\{(0,...,0,1)} we put

Axl,...,z") = (fll(:rl,...,z"+1),...,fl"(ml,...,x"“))
x! z”
= (1_xn+1,...,1_$n+1)
and on U, := S™\{(0,...,0,—1)}
fo(zh, ..., ™) = (fl(a!,..., 2™, ..., fR (2, ..., z"Y))
z! z"
= (1+I"+17“',1+z‘"+1> X
Let wy,ws, ..., w, € R™ be linearly independent. We consider
21,22 € R™ as equivalent if there are m;,ma,..., m, € Z with

n
2] — R = E m;w;
i=1

Let 7 be the projection mapping z € R™ to its equivalence class. The
torus T" := w(R™) can then be made a differentiable manifold (of
dimension n) as follows: Suppose A, is open and does not contain
any pair of equivalent points. We put

Us :=n(As)

2q = (WlAa)_l-

The preceding examples are compact. Of course, there exist also non-
compact manifolds. The simplest example is R%. In general, any open
subset of a (differentiable) manifold is again a (differentiable) mani-
fold.

If M and N are differentiable manifolds, the Cartesian product M x
N also naturally carries the structure of a differentiable manifold.
Namely, if {Us,Za}aca and {Vs,ys}sep are atlases for M and N,
resp., then {Us X V3, (Za,Ys)}(a,p)cax B is an atlas for M x N with
differentiable chart transitions.

Definition 1.1.4 A map h : M — M’ between differentiable manifolds M
and M’ with charts {U,,zo} and {U%, z,,} is called differentiable if all maps
zj3ohoxz,! are differentiable (of class C™, as always) where defined.

Such a map is called a diffeomorphism if bijective and differentiable in both
directions.
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For purposes of differentiation, a differentiable manifold locally has the
structure of Euclidean space. Thus, the differentiability of a map can be
tested in local coordinates. The diffeomorphism requirement for the chart
transitions then guarantees that differentiability defined in this manner is a
consistent notion, i.e. independent of the choice of a chart.

Remark. We want to point out that in the context of the preceding def-
initions, one cannot distinguish between two homeomorphic manifolds nor
between two diffeomorphic differentiable manifolds.

When looking at Definitions 1.1.2, 1.1.3, one may see a general pattern
emerging. Namely, one can put any type of restriction on the chart transitions,
for example, require them to be affine, algebraic, real analytic, conformal,
Euclidean volume preserving,..., and thereby define a class of manifolds with
that particular structure. Perhaps the most important example is the notion
of a complex manifold. We shall need this, however, only at certain places in
this book, namely in 5.1, 5.2.

Definition 1.1.5 A complez manifold of complex dimension d (dim¢M = d)
is a differentiable manifold of (real) dimension 2d (dimg M = 2d) whose charts
take values in open subsets of C4 with holomorphic chart transitions.

In the case of a complex manifold, it is customary to write the coordinates
of C? as ‘ . '
z=(2'...,2%), with 27 =27 +iy, (1.1.2)
with i := v/—1, that is, use (z!,y',... ,z¢,y%) as Euclidean coordinates on
R?¢. We then also put i . _
2=z — i
The requirement that the chart transitions zgoz;! : zo(UaNUpg) — 25(UaN
Up) be holomorphic then is expressed as

(92{, 0 1:1:3
dzk Ld-a)
for all j, k where
0 1/ 0 3]
— == il = e ), 1.14
8zk 2 (8r’° +l(9yk) ( )

We also observe that a complex manifold is always orientable because
holomorphic maps always have a positive functional determinant.

We conclude this section with a useful technical result.

Lemma 1.1.1 Let M be a differentiable manifold, (Uy)|laca an open cover-
ing. Then there exists a partition of unity, subordinate to (Uy). This means
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that there ezists a locally finite refinement (V3)gep of (Us) and C§° (i.e. C*
functions pg with {x € M : pg(z) # 0} having compact closure) functions
¢p: M — R with

(i) suppypp C Vg for all B € B.
(i) 0<yg(r) <1 forallzec M,B3€B.

(#1) Y wp(x) =1 for allz € M.
BEB

Note that in (ii1), there are only finitely many nonvanishing summands at
each point since only finitely many g are nonzero at any given point because
the covering (V) is locally finite.

Proof. See any advanced textbook on Analysis, e.g. J.Jost, Postmodern Anal-
ysis, 3rd ed., Springer, 2005. O

Perspectives. Like so many things in Riemannian geometry, the concept of a
differentiable manifold was in some vague manner implicitly contained in Bern-
hard Riemann’s habilitation address “Uber die Hypothesen, welche der Geometrie
zugrunde liegen”, reprinted in [254]. The first clear formulation of that concept,
however, was given by H. Weyl[252].

The only one dimensional manifolds are the real line and the unit circle S’,
the latter being the only compact one. Two dimensional compact manifolds are
classified by their genus and orientability character. In three dimensions, there exists
a program by Thurston[243, 244] about the possible classification of compact three-
dimensional manifolds. References for the geometric approach to this classification
will be given in the Survey on Curvature and Topology after Chapter 4 below. — In
higher dimensions, the plethora of compact manifolds makes a classification useless
and impossible.

In dimension at most three, each manifold carries a unique differentiable struc-
ture, and so here the classifications of manifolds and differentiable manifolds coin-
cide. This is not so anymore in higher dimensions. Milnor[180, 181] discovered exotic
7-spheres, i.e. differentiable structures on the manifold S’ that are not diffeomorphic
to the standard differentiable structure exhibited in our example. Exotic spheres
likewise exist in higher dimensions. Kervaire[156] found an example of a manifold
carrying no differentiable structure at all.

In dimension 4, the understanding of differentiable structures owes important
progress to the work of Donaldson. He defined invariants of a differentiable 4-
manifold M from the space of selfdual connections on principal bundles over it.
These concepts will be discussed in more detail in §3.2.

In particular, there exist exotic structures on R*. A description can e.g. be
found in [79].
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1.2 Tangent Spaces

Let z = (z,...,2%) be Euclidean coordinates of Rd 2 C R? open, z¢ € £2.
The tangent space of {2 at the point zg,

T, 02

is the space {zo} x E, where E is the d-dimensional vector space spanned by
the basis 6—21-, e %;. Here, a—gr, R -3—2;; are the partial derivatives at the
point xo. If 2 C R%, 2’ C R® are open, and f : 2 — (2’ is differentiable, we
define the derivative df (zo) for zo € §2 as the induced linear map between
the tangent spaces

df(.’l:o) ZTIO.Q — Tf(xo).Q'

i 0 n—»viafj o) 5
ori oz~ °9fi

v=v

Here and in the sequel, we use the Finstein summation convention: An index
occuring twice in a product is to be summed from 1 up to the space dimension.
Thus, v'-a%— is an abbreviation for

d
. 0

v'%L— 37 stands for

Cc af]
gjz:l 8zt Bfi

In the previous notations, we put
TN =N x E= N x R4

Thus, T'§2 is an open subset of R? x R, hence in particular a differentiable

manifold.
7 :T§2 — 2 (projection onto the first factor)

(z,v) >z

is called a tangent bundle of 2. T2 is called the total space of the tangent
bundle. :
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Likewise, we define

df -T2 - T
; 0 ;0f7 0
(@0 5) = (@0 5 (2 575)
Instead of
df (z,v)
we write
df (z)(v).

If in particular, f : 2 — R is a differentiable function, we have for v = vié%;

; 0
df (z)(v) = v‘a—;:(a:) € TR =R.

In this case, we often write v(f)(z) in place of df(z)(v) when we want to
express that the tangent vector v operates by differentiation on the function
f.

Let now M be a differentiable manifold of dimension d, and p € M. We
want to define the tangent space of M at the point p. Let z : U — R? be
a chart with p € U, U open in M. We say that the tangent space T,M is
represented in the chart « by Ty(,)z(U). Let 2’ : U’ — R? be another chart
with p € U’, U’ open in M. 2 := z(U), {2 := 2'(U’). The transition map

oz l:z(UNU) - (UNU')
induces a vector space isomorphism
L:=d(z' oz ') (z(p)) : Tu(p)2 — Tur(p) 2.

We say that v € Ty;)f2 and L(v) € T,/ ()2’ represent the same tangent
vector in T, M. Thus, a tangent vector in T, M is given by the family of its
coordinate representations. This is motivated as follows: Let f : M — R
be a differentiable function. Assume that the tangent vector w € T,M is
represented by v € Ty(,)Z(U). We then want to define df (p) as a linear map

from T, M to R. In the chart z, let w € T, M be represented by v = v"% €
Ty(pyz(U). We then say that
df (p)(w)

in this chart is represented by
d(f o™ ") (z(p))(v).
Now
d(f oz ") (2(p))(v) =d(f oz’ oz’ 027 1)(z(p))(v)

=d(f o' 1) (2 (p))(L(v))
by the chain rule

= d(f oz’7!)(a'(p)) 0 d(z’ 0 z71)(z(p))(v)



