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PREFACE

Interaction of a fluid with a solid body is a widespread phenomenon in
Nature. It occurs at different scales and in different applied disciplines:
swimming of fish, flight of an airplane, transport of material through water
pipelines and blood flow in human arteries are just few significant examples.

Interestingly enough, even though the mathematical theory of the
motion of bodies in a liquid is one of the oldest and most classical problems
in fluid mechanics, owed to the seminal contributions of Stokes, Kirchhoff,
and Thomson (Lord Kelvin), only very recently have mathematicians
become interested in a systematic study of the basic problems related to
fluid-structure interaction, from both analytical and numerical viewpoints.

In fact, contributions to the subject are nowadays growing at such a fast
pace that it is highly desirable to have an updated information on the state
of the art.

This book is a unique collection of fundamental papers written by world
renowned experts aimed at furnishing the highest level of development in
several significant areas of fluid-structure interaction.

Specifically, the contribution of Th. Dunne et al. is devoted to a
numerical analysis of the problem of a viscous fluid interacting with a
deformable elastic body. in particular, it reviews the pros and cons of
whether it is more appropriate to use a Lagrangean or Eulerian formulation.

The article by V. Heuveline and P. Wittwer provides a detailed survey
on the progress over the recent years made on the problem of the interaction
of an exterior Navier—Stokes flow with a rigid structure at low Reynolds
number.

The paper of M. Razzaq et al. centers around the use of the Arbitrary
Lagrangean Eulerian formulation in the numerical resolution of the problem
of fluid-solid interaction. As an application, the influence of endovascular
stent implantation onto cerebral aneurysm hydrodynamics is investigated.



vi Preface

J. San Martin and M. Tucsnak consider the coupled problem of the
interaction of a fluid with a number of rigid bodies. Their contribution
surveys the fundamental mathematical analysis that is at the basis of the
problem.

Finally, the article of A. Quarteroni presents some of the basic models
that are used to describe blood flow dynamics in local arterial environments
and to predict the vessel wall deformation in compliant arteries.

We hope that the diversity of the topics along with the different
approaches will allow the reader to have a global and updated view on
the latest results on the subject and on the relevant open questions.

Editors
Giovanni P. Galdi and Rolf Rannacher
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CHAPTER 1

NUMERICAL SIMULATION OF FLUID-STRUCTURE
INTERACTION BASED ON MONOLITHIC
VARIATIONAL FORMULATIONS

Th. Dunne, R. Rannacher® and Th. Richter

Institute of Applied Mathematics
University of Heidelberg, INF 293/294
D-69120 Heidelberg, Germany
*rannacher@iwr.uni-heidelberg.de

The dilemma in modeling the coupled dynamics of fluid-structure interaction
(FSI) is that the fluid model is normally based on an Eulerian perspective in
contrast to the usual Lagrangian formulation of the solid model. This makes the
setup of a common variational description difficult. However, such a variational
formulation of FSI is needed as the basis of a consistent Galerkin discretization
with a posteriori error control and mesh adaptation, as well as the solution of
optimal control problems based on the Euler-Lagrange approach. This article
surveys recent developments in the numerical approximation of FSI problems
based on “monolithic” variational formulations. The modeling is based either on
an arbitrary Lagrangian—Eulerian (ALE) or a fully Eulerian—Eulerian (Eulerian)
description of the (incompressible) fluid and the (elastic) structure dynamics.
These global one-field formulations constitute a strongly implicit coupling of
the dynamics of fluid and structure which, in contrast to the commonly used
weakly coupled two-field formulations, provides the basis for arobust and efficient
solution process. In this context a fully consistent treatment of mesh adaptation
(DWR method) and optimal control (“all-at-once” approach) becomes possible
within a Galerkin finite element discretization.

1. Introduction

Computational fluid dynamics and computational structure mechanics are
two major areas of numerical simulation of physical systems. With the intro-
duction of high performance computing it has become possible to tackle

1



2 Th. Dunne, R. Rannacher and Th. Richter

systems with a coupling of fluid and structure dynamics. General examples
of such fluid-structure interaction (FSI) problems are flow transporting
elastic particles (particulate flow), flow around elastic structures (airplanes,
submarines) and flow in elastic structures (haemodynamics, transport of
fluids in closed containers). In all these settings the dilemma in modeling the
coupled dynamics is that the fluid model is normally based on an Eulerian
perspective in contrast to the usual Lagrangian approach for the solid
model. This makes the setup of a common variational description difficult.
However, such a variational formulation of FSI is needed as the basis of
a consistent approach to residual-based a posteriori error estimation and
mesh adaptation as well as to the solution of optimal control problems by
the Euler—Lagrange method. This is the subject of the present paper, which
is largely based on the doctoral dissertation of the first author Dunne?? and
the survey article Dunne and Rannacher.?*

Combining the Eulerian and the Lagrangian setting for describing FSI
involves conceptional difficulties. On one hand the fluid domain itself is
time-dependent and depends on the deformation of the structure domain.
On the other hand, for the structure the fluid boundary values (velocity and
the normal stress) are needed. In both cases values from one problem are
used for the other, which is costly and can lead to a drastic loss of accuracy.
A common approach to dealing with this problem is to separate the two
models, solve each separately, and so converge iteratively to a solution
which satisfies both together with the interface conditions (Fig. 1). Solving
the separated problems serially multiple times is referred to as a “partitioned
(or segregated) approach”.

Fluid Fluid Fluid

— AU T R A

Structure Structure Structure

; 'n+1
n

'nt2

Fig. 1. Partitioned approach, Lagrangian and Eulerian frameworks coupled.
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Fig. 2. Transformation approach, both frameworks Lagrangian.

A partitioned approach does not contain a variational equation for the
fluid-structure interface. To achieve this, usually an auxiliary unknown
coordinate transformation function 7 is introduced for the fluid domain.
With its help the fluid problem is rewritten as one on the transformed domain
which s fixed in time. Then, all computations are done on the fixed reference
domain and as part of the computation the auxiliary transformation function
Ty has to be determined at each time step. Figure 2 illustrates this
approach for the driven cavity problem considered in Sec. 8. Such so-called
“arbitrary Lagrangian—Eulerian” (ALE) methods are used in Huerta and
Liu,3® Wall,>® Hron and Turek,?* and corresponding transformed space-
time finite element formulations in Tezduyar, Behr and Liou®!? and
Tezduyar, Sathe, Stein and Aureli.’3 For other ways of dealing with implicit
coupling in FSI models, we refer to Vierendeels>® and Wall, Gerstenberger,
Gamnitzer, Forster and Ramm.>® Computational comparisons of partitioned
and monolithic approaches have recently been made in Heil, Hazel and
Boyle.3?

Both, the partitioned and the transformation approach to overcome the
Euler—Lagrange discrepancy explicitly track the fluid-structure interface
by mesh adjustment and are generally referred to as “interface tracking”
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methods. Both methods leave the structure problem in its natural Lagrangian
setting.

However, one may follow the alternative way of posing the fluid as well
as the structure problem in a fully Eulerian—Eulerian (Eulerian) framework.
A similar approach has been used by Lui and Walkington*? in the context
of the transport of visco-elastic bodies in a fluid. In the Eulerian setting
a phase variable is employed on the fixed mesh to distinguish between
the different phases, liquid and solid. This approach to identifying the
fluid-structure interface is generally referred to as “interface capturing”, a
method commonly used in the simulation of multiphase flows, Joseph and
Renardy.*’ Examples for the use of such a phase variable are the Volume
of Fluid (VoF) method3? and the Level Set (LS) method — Chang, Hou,
Merriman and Osher,'® Osher and Sethian,** Sethian.*® In the classical LS
approach the distance function has to continually be reinitialized, due to the
smearing effect by the convection velocity in the fluid domain. This makes
the use of the LS method delicate for modeling FSI problems particularly
in the presence of cornered structures. To cope with this difficulty, in
Dunne?!-22 a variant of the LS method, the Initial Position (IP) method, has
been proposed that makes reinitialization unnecessary and which easily
copes with cornered structures. This approach does not depend on the
specific structure model.

The key variable in structure dynamics is the deformation, and since this
depends on the deflection, it is understandable why structure dynamics is
preferably described in the Lagrangian frame. The set of “initial positions”
(IP set) of all structure points enables us to describe the deformations in
the Eulerian frame. This set is then transported with the structure velocity
in each time step. Based on this concept the displacement is now available
in an Eulerian sense. Also its gradient has to be rewritten appropriately,
which will be explained in Sec. 4.2. Since the fluid-structure interface will
be crossing through cells, we will have to also transport the IP set in the
fluid domain.

If we were to use the fluid velocity for the advection of the IP set, this
would lead to entanglement of the respective displacements, which would
“wreak havoc” on the interface cells. This is a known problem with LS
approaches. A common way for fixing this problem has been to occasionally
fix the LS field between the time steps. The problem with this approach is



Numerical Simulation of Fluid-Structure Interaction 5

that the variational formulation is no longer consistent. As an alternative,
we harmonically continue the structure velocity into the fluid domain. In
the fluid domain, we then use this velocity for advecting the IP set. Since an
IP set is available in both domains, we can always at each point determine
if it belongs to the fluid or solid part of the model.

Again this approach is similar to the LS approach. Actually, itis possible
to also develop a model for FSI using the level set approach, Legay,
Chessa and Belytschko.*! But when developing a complete variational
formulation the two key characteristics of the LS approach also become the
main cause of concern: reinitialization and the signed distance function.
Although the problem of reinitialization here can also be avoided by
using an harmonically extended velocity, the trouble concerning corner
approximation persists. In contrast to this, by using an initial position set,
we are deforming a virtual mesh of the structure which is extended into the
whole domain.

The equations we use are based on the momentum and mass con-
servation equations for the flow of an incompressible Newtonian fluid
and the deformation of a compressible St. Venant—Kirchhoff or likewise
incompressible neo-Hookean solid. The spatial discretization is by a
second-order finite element method with conforming equal-order (bilinear)
trial functions using “local projection stabilization”, Becker and Braack.*>
The time discretization uses the second-order “Fractional-Step-6” scheme
originally proposed by Bristeau, Glowinski and Periaux.!? This method
has the same complexity as the Crank—Nicolson scheme but better stability
properties, see Rannacher.*¢

Based on the Eulerian variational formulation of the FSI system, we use
the “dual weighted residual” (DWR) method, described in Becker and Ran-
nacher,”” Becker, Heuveline and Rannacher,® Bangerth and Rannacher,?
Braack and Richter, ! to derive “goal-oriented” a posteriori error estimates.
The evaluation of these error estimates requires the approximate solution of
a linear dual variational problem. The resulting a posteriori error indicators
are then used for automatic local mesh adaptation. The full application of
the DWR method to FSI problems requires a Galerkin discretization in
space as well as in time. Due to the use of a difference scheme in time, in
this paper we are limited to “goal-oriented” mesh adaptation in computing
steady states or (somewhat heuristically) to quasi-steady states within the
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time stepping process. The incorporation of automatic time-step control
will be the subject of forthcoming work.

The method for computing FSI described in this paper is validated at a
stationary model problem that is a lid-driven cavity involving the interaction
of an incompressible Stokes fluid with a linearized incompressible neo-
Hookean solid. Then, as a more challenging test the self-induced oscillation
of a thin elastic bar immersed in an incompressible fluid is treated
(FLUSTRUK-A benchmark, see Hron and Turek.3*) For this test problem,
our method is also compared against a standard “arbitrary Lagrange
Eulerian” (ALE) approach. The possible potential of the fully Eulerian
formulation of the FSI problems is indicated by its good behavior for
large structure deformations. All computations and visualizations are done
using the flow-solver package GASCOIGNE?® and the graphics package
VISUSIMPLE.>’ The details on the software implementation can be found
in Dunne.?!-23 :

The outline of this paper is as follows. Section 2 (“Notation”) introduces
the basic notation for the ALE as well as the Eulerian formulation of the
FSI problem and Sec. 3 (“Reference frameworks”) discusses the reference
frameworks, Lagrangian and Eulerian, which will be used throughout this
paper. The corresponding variational formulations are developed in detail,
first separately for the structure and fluid parts in Sec. 4 (“Variational
formulations of fluid and structure problems”) and then for the coupled
FSI problem in Sec. 5 (“Variational formulations of the FSI problem”™).
Section 6 (“Discretization”) describes the discretization in space and time
as well as the techniques for solving the algebraic systems and for evaluating
directional derivatives. The derivation of a posteriori error estimates and
strategies for mesh adaptation is explained in Sec. 7 (“Mesh adaptation™). In
Sec. 8 (“Numerical test 1: elastic flow cavity”) the newly proposed Eulerian
method is validated at a stationary test problem “elastic flow cavity”. Then,
Sec. 9 (“Numerical test 2: FSI benchmark FLUSTRUK-A”) contains the
results obtained by the two approaches, ALE and Eulerian, for the solution
of the benchmark problem FLUSTRUK-A (oscillations of a thin elastic bar)
for various combinations of material models and flow conditions. The paper
is closed by Sec. 10 (“Summary and future development’) which gives a
summary and points at some directions of ongoing and future research on
the basis of the approaches described in this paper.
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2. Notation

We begin with introducing some notation which will be used throughout this
paper. By Q € R? (d = 2 or d = 3), we denote the domain of definition
of the FSI problem. The domain £2 is supposed to be time independent but
to consist of two possibly time-dependent subdomains, the fluid domain
Q(7) and the structure domain 24(7). Unless needed, the explicit time
dependency will be skipped in this notation. The boundaries of €2, €2 7, and
Qg are denote by 9$2, 92 7, and 92, respectively. The common interface
between 2 s and €2 is I';(?), or simply T';.

The initial structure domain is denoted by ﬁs. Spaces, domains,
coordinates, values (such as pressure, displacement, velocity) and operators
associated to Q; (or Q ) will likewise be indicated by a “hat”.

Partial derivatives of a function f with respect to the i-th coordinate
are denoted by 9; f, and the total time-derivative by d; f. The divergence of
a vector and tensor is written as div f = Zi di fi and (divF); = Zj 0 Fjj.
The gradient of a vector valued function v is the tensor with components
(Vv),'j = 3jv,'.

By [f], we denote the jump of a (possibly discontinuous) function f
across an interior boundary, where n is always the unit vector n at points
on that boundary.

For a set X, we denote by L%(X) the Lebesque space of square-
integrable functions on X equipped with the usual inner product and norm

(s /X fedx, 1fI% = (£ P)x.

respectively, and correspondingly for vector- and matrix-valued functions.
Mostly the domain X will be €2, in which case we will skip the domain index
in products and norms. For 2 r and €2, we similarly indicate the associated
spaces, products, and norms by a corresponding index “f” or *“s”.

We will generally use roman letters, V, for denoting spaces of functions
depending only on spatial variables and calligraphic letters, V, for spaces
of functions depending additionally on time. Let Ly := L*(X)and LY :=
L%(X)/R. The functions in Lx (with X = Q, X = Q (1), or X = Q,(1))
with first-order distributional derivatives in L x make up the Sobolev space
H'(X). Further, H}(X) = {v € H'(X) : vax, = 0}, where 3Xp is
that part of the boundary 0X at which Dirichlet boundary conditions are
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imposed. Further, we will use the function spaces Vy := H 1(x)4, Vg =
H} (X)?, and for time-dependent functions

Ly :=L*[0,T; Lx], Vx:=L0,T; Vx]NH'[0, T; V],
£% = L0, T; LY), Vg = L20, T; VRINH'[0, T V3],

where V¥ is the dual of Vg, and £2 and H! indicate the corresponding
properties in time. Again, the X-index will be skipped in the case of X = €2,
and for X = Qrand X = Q; a corresponding index “f” or “s” will be used.

3. Reference Frameworks

In modeling the variation of a spatial continuum in time two approaches are
commonly used. The Lagrangian or material framework and the Eulerian
or spatial framework. Both approaches have the simple goal of describing
how a certain scalar quantity of interest f : R? x I — R changes in space
and with time. The choice of the “reference point” of the value f is what
distinguishes the two frameworks. We denote by x € R and ¢ € I the
spatial and temporal coordinates, respectively. The function f is assumed
to be sufficiently smooth with respect to space and time.

3.1. Lagrangian framework

In the Lagrangian framework one observes the value at a preselected point
that is moving (and possibly accelerating) steadily through space. The initial
position of the point at the initial time #y, we define as x. Thus, the position
of the point is a function of the initial position x and time ¢,

e 1)

We define the velocity v of this point as the total time derivative of its
position x,

v(x, 1) := dix(X, ) = dx + Vxd,X. 3.1)

Since X is the position of the point at an initial time it follows that it does
not change in time, i.e., d;x = 0 and v = 9,x.

To be more precise, in the Lagrangian framework we should refer to
f(x, 1) as f (x,0) := f(x(x,1),1). Visually one can imagine that we are
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observing the value at a material point that was initially at the position X
and is moving through space with velocity v. The total time derivative of f
in the Lagrangian framework can thus be written:

dfG, 0 =08fR 0+ VFGE Ddk=07f& 0. (3.2)

Since the Lagrangian approach describes the movement and deformation
of individual particles and volumes it follows that this framework is the
natural approach for modeling structure dynamics.

3.2. Eulerian framework

In the Eulerian framework one observes the value at a fixed point x in
space. Hence this framework is also referred to as a spatial framework.
Looking back at the Lagrangian framework one can imagine that at the
point x at different times there will continuously be different material points
moving through. Each such material points will have a respective initial
position x. Thus, the velocity v at this space-time position (x, #) is still to
be understood as the velocity of the material point with the initial position
X ile Gt S d @ ) =0

In an Eulerian framework the quantity of interest is written as f(x, 7)
with x and 7 being anywhere within the permitted space-time continuum.
Taking the total time derivative of f leads to

ds f(x, 1) = 0; f(x, 1) + Vf(x, ) dix = 0 f(x, 1) + v - Vf(x, D). (3.3)

The second term is referred to as the “transport” or “convection term”. This
term is a characteristic difference between the Eulerian and Lagrangian
frameworks. In the Lagrangian framework, when the total time derivative
is expanded into all its partial derivatives, there is no convective term due
to the spatial parameter being constant in time. In contrast, in Eulerian
frameworks convection can generally be expected in the expanded total
time derivative.

The Eulerian framework presents itself as the natural approach for
modeling fluid flow. This follows as a consequence that one is less interested
in the individual behavior of particles and more interested in flow properties
at certain spatial points in the flow domain. In viscous fluids with behavior
similar to soft materials, a Lagrangian approach would be plausible.



