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Preface

This book deals with the crucial issue of implementing Finite State Machines (FSMs)
in hardware, which has become increasingly important in the development of modern,
complex digital systems.

Because FSM is a modeling technique for synchronous digital circuits, a detailed
review of synchronous circuits in general is also presented, to enable in-depth and
broad coverage of the topic.

A new classification for FSMs from a hardware perspective is introduced, which
places any state machine under one of three categories: regular machines, timed machines,
or recursive machines. The result is a clear, precise, and systematic approach to the con-
struction of FSMs in hardware.

Many examples are presented in each category, from datapath controllers to pass-
word readers, from car alarms to multipliers and dividers, and from triggered circuits
to serial data communications interfaces.

Several of the state machines, in all three categories, are subsequently implemented
using VHDL and SystemVerilog. It starts with a review of these hardware description
languages, accompanied by new, detailed templates. The subsequent designs are always
complete and are accompanied by comments and simulation results, illustrating the
design’s main features.

Numerous exercises are also included in the chapters, providing an invaluable
opportunity for students to play with state machines, VHDL and SystemVerilog lan-
guages, compilation and simulation tools, and FPGA development boards.

In summary, the book is a complete, modern, and interesting guide on the theory
and physical implementation of synchronous digital circuits, particularly when such
circuits are modeled as FSMs.
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1 The Finite State Machine Approach

1.1 Introduction

This chapter presents fundamental concepts and introduces new material on the finite
state machine (FSM) approach for the modeling and design of sequential digital
circuits.

A summary of the notation used in the book is presented in table 1.1.

1.2 Sequential Circuits and State Machines

Digital circuits can be classified as combinational or sequential. A combinational circuit
is one whose output values depend solely on the present input values, whereas a
sequential circuit has outputs that depend on previous system states. Consequently,
the former is memoryless, whereas the latter requires some sort of memory (generally,
D-type flip-flops [DFFs], reviewed in section 2.2).

An example of a combinational circuit is presented in figure 1.1a, which shows
an N-bit adder; because the present sum is not affected by previous sums computed
by the circuit, it is combinational. An example of sequential circuit is depicted in
‘figure 1.1b, which shows a synchronous three-bit counter (it counts from 0 to 7);
because its output depends on the system state (for example, if the current output is
5, then the next will be 6), it is a sequential circuit. Note the presence of a clock signal
in the latter.

An often advantageous model for sequential circuits is presented in figure 1.2a,
which consists of a combinational logic block in the forward path and a memory
(DFFs) in the feedback loop. When this architecture is used, a finite state machine (FSM)
results. Note that the state presently stored in the memory is called pr_state, and
the state to be stored by the DFFs at the next (positive) clock transition is called
nx_state.

An example of such a modeling technique is depicted in figure 1.2b, which shows
the same circuit of figure 1.1b, now reorganized according to the architecture of



Table 1.1

Chapter 1

Item

Representation

Examples

Signal names

In italic

a, x, clk, rst, ena, WE

Active-low signal names

In italic, followed by an n

WERn, rstn, rst_n

Single-bit values Within a pair of single quotes 0,1, XL -, 7
Multi-bit values Within a pair of double quotes "00", "1000", "ZZZZ"
Integers Without quotes 1000, 5, 256
Allowed bit values '0" or L' for low logic level y="0"ory="L"

1" or 'H' for high logic level y="1"ory="H'

X' or '~ for “don’t care” y=X'ory="-

'Z' for high impedance y=Z

Bit indexing (outside
VHDL or SystemVerilog
codes)

Between parentheses, with a colon

x(7:0) means that x has 8 bits,
x(7) is the most significant bit,
x(0) is the least significant bit

Reset and clear signals

- Called reset (rst) when asynchronous (resets
the circuit regardless of the clock)

- Called clear (clr) when synchronous (effective
only at the proper clock edge)

if rst="1"then ...
if clr="1"then ...

Transition conditions in
state diagrams

& means and

| means or

! and # mean not or different

~ (bar) and ' mean not or inversion

'X' and - mean “don’t care” for a single-bit value

"XX..."and "~ -..." mean “don’t care” for a
multi-bit value

— means “don’t care” for an integer

ifa='1"&b="0"then ...

ifa="'1"| b="0"then ...

if xI=athen ... orif x#athen ...

y=x'

x="1"&y="-

If(@a="111" & b="0-0") |
¢="000" then ...

m=58&n=-

a(N-1:0) =i
+ - SUM(N:0)
D(N-1:0) mip]
(a) N-bit adder
Figure 1.1

> r>

clk—m

. A
LDC*do 9o Dre o —LD—LJD d2 g2
i

Ll es

1

(b) Synchronous 3-bit counter

Examples of (a) combinational and (b) sequential circuits.




