)]

R

Finite State Machines in Hardware
Theory and Design (with VHDL and SystemVerilog)

Noliiok 5. Rerdui

Finite State Machines in Hardware

Theory and Design (with VHDL and SystemVerilog)

Volnei A. Pedroni

Ay

I, :{:3

The MIT Press
Cambridge, Massachusetts
London, England

© 2013 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional
use. For information, please email special_sales@mitpress.mit.edu.

This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited, Hong
Kong. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Pedroni, Volnei A.

Finite state machines in hardware : theory and design (with VHDL and SystemVerilog) /
Volnei A. Pedroni.

pages cm

Includes bibliographical references and index.

ISBN 978-0-262-01966-8 (hardcover : alk. paper) 1. SystemVerilog (Computer hardware
description language) 2. VHDL (Computer hardware description language) 3. Sequential
machine theory—Data processing. 4. Computer systems—Mathematical models. I. Title.

TK7885.7.P443 2013

621.39'2—dc23

2013009431

10 9 8 7 6 5 4 3 21

Finite State Machines in Hardware

LR HEEAREALI L.

www. ertongbook. com

o~

Preface

This book deals with the crucial issue of implementing Finite State Machines (FSMs)
in hardware, which has become increasingly important in the development of modern,
complex digital systems.

Because FSM is a modeling technique for synchronous digital circuits, a detailed
review of synchronous circuits in general is also presented, to enable in-depth and
broad coverage of the topic.

A new classification for FSMs from a hardware perspective is introduced, which
places any state machine under one of three categories: regular machines, timed machines,
or recursive machines. The result is a clear, precise, and systematic approach to the con-
struction of FSMs in hardware.

Many examples are presented in each category, from datapath controllers to pass-
word readers, from car alarms to multipliers and dividers, and from triggered circuits
to serial data communications interfaces.

Several of the state machines, in all three categories, are subsequently implemented
using VHDL and SystemVerilog. It starts with a review of these hardware description
languages, accompanied by new, detailed templates. The subsequent designs are always
complete and are accompanied by comments and simulation results, illustrating the
design’s main features.

Numerous exercises are also included in the chapters, providing an invaluable
opportunity for students to play with state machines, VHDL and SystemVerilog lan-
guages, compilation and simulation tools, and FPGA development boards.

In summary, the book is a complete, modern, and interesting guide on the theory
and physical implementation of synchronous digital circuits, particularly when such
circuits are modeled as FSMs.

Acknowledgments

I want to express my gratitude to Bruno U. Pedroni for his invaluable help and sug-
gestions during the initial phase of the book. I am also grateful to the personnel at
MIT Press, especially Marc Lowenthal, acquisitions editor, for his assistance during the
early phases of the book; and Marcy Ross, production editor, for her excellent work
and endless patience during the editing and production phases.

Contents

Preface xi
Acknowledgments xiii

1 The Finite State Machine Approach 1
1.1 Introduction 1
1.2 Sequential Circuits and State Machines 1
1.3 State Transition Diagrams 4
1.4 Equivalent State Transition Diagram Representations 6
1.5 Under- and Overspecified State Transition Diagrams 8
1.6 Transition Types 11
1.7 Moore-to-Mealy Conversion 12
1.8 Mealy-to-Moore Conversion 14
1.9 Algorithmic State Machine Chart 15
1.10 When to Use the FSM Approach 16
1.11 List of Main Machines Included in the Book 17
1.12 Exercises 18

2 Hardware Fundamentals—Part | 21
2.1 Introduction 21
2.2 Flip-Flops 21
2.3 Metastability and Synchronizers 24
2.4 Pulse Detection 28
2.5 Glitches 29
2.6 Pipelined Implementations 32
2.7 Exercises 33

3 Hardware Fundamentals—Part Il 39
3.1 Introduction 39
3.2 Hardware Architectures for State Machines 39
3.3 Fundamental Design Technique for Moore Machines 41

vi

3.4
3:5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3:13
3.14

Fundamental Design Technique for Mealy Machines 44
Moore versus Mealy Time Behavior 46

State Machine Categories 47

State-Encoding Options 49

3.7.1 Sequential Binary Encoding 49

3.7.2 One-Hot Encoding 50

3.7.3 Johnson Encoding 50

3.7.4 Gray Encoding 50

3.7.5 Modified One-Hot Encoding with All-Zero State
3.7.6 Other Encoding Schemes 52

The Need for Reset 52

Safe State Machines 54

Capturing the First Bit 56

Storing the Final Result 58

Multimachine Designs 60

State Machines for Datapath Control 62

Exercises 67

Design Steps and Classical Mistakes 73

4.1
4.2

4.3

Introduction 73

Classical Problems and Mistakes 73

4.2.1 Skipping the State Transition Diagram 73
4.2.2 Wrong Architecture 73

4.2.3 Incorrect State Transition Diagram Composition
4.2.4 Existence of State Bypass 75

4.2.5 Lack of Reset 75

4.2.6 Lack of Synchronizers 76

4.2.7 Incorrect Timer Construction 76

4.2.8 Incomplete VHDL/SystemVerilog Code 76
4.2.9 Overregistered VHDL/SystemVerilog Code 78
Design Steps Summary 79

Regular (Category 1) State Machines 81

5.1
5.2
53
5.4

Introduction 81

Architectures for Regular (Category 1) Machines 82
Number of Flip-Flops 84

Examples of Regular (Category 1) Machines 84
5.4.1 Small Counters 84

5.4.2 Parity Detector 85

5.4.3 Basic One-Shot Circuit 86

5.4.4 Temperature Controller 88

5.4.5 Garage Door Controller 89

51

74

Contents

5:5

5.4.6 Vending Machine Controller 90

5.4.7 Datapath Control for an Accumulator 91

5.4.8 Datapath Control for a Greatest Common Divisor Calculator
5.4.9 Generic Sequence Detector 95

5.4.10 Transparent Circuits 96

5.4.11 LCD, I°’C, and SPI Interfaces 97

Exercises 97

6 VHDL Design of Regular (Category 1) State Machines 105

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8

6.9

Introduction 105

General Structure of VHDL Code 105

VHDL Template for Regular (Category 1) Moore Machines 107
Template Variations 111

6.4.1 Combinational Logic Separated into Two Processes 111
6.4.2 State Register Plus Output Register in a Single Process 112
6.4.3 Using Default Values 112

6.4.4 A Dangerous Template 113

VHDL Template for Regular (Category 1) Mealy Machines 114
Design of a Small Counter 116

Design of a Garage Door Controller 120

Design of a Datapath Controller for a Greatest Common Divisor
Calculator 123

Exercises 126

7 SystemVerilog Design of Regular (Category 1) State Machines 129

7.1
7.2
73
7.4
75
7.6
L7

7.8

8.1
8.2
8.3

Introduction 129
General Structure of SystemVerilog Code 129
SystemVerilog Template for Regular (Category 1) Moore Machines

93

130

SystemVerilog Template for Regular (Category 1) Mealy Machines 133

Design of a Small Counter 135

Design of a Garage Door Controller 137

Design of a Datapath Controller for a Greatest Common Divisor
Calculator 140

Exercises 141

Timed (Category 2) State Machines 143

Introduction 143

Architectures for Timed (Category 2) Machines 144
Timer Interpretation 146

8.3.1 Time Measurement Unit 146

8.3.2 Timer Range 146

8.3.3 Number of Bits 146

vii

viii

10

8.4
8:5

8.6
8.7
8.8
8.9
8.10
8.11

8.12

Transition Types and Timer Usage 147

Timer Control Strategies 147

8.5.1 Preliminary Analysis 148

8.5.2 Timer Control Strategy #1 (Generic) 149
8.5.3 Timer Control Strategy #2 (Nongeneric) 150
8.5.4 Time Behavior of Strategies #1 and #2 151
Truly Complementary Time-Based Transition Conditions 153
Repetitively Looped State Machines 154

Time Behavior of Timed Moore Machines 155
Time Behavior of Timed Mealy Machines 156
Number of Flip-Flops 158

Examples of Timed (Category 2) Machines 158
8.11.1 Blinking Light 159

8.11.2 Light Rotator 160

8.11.3 Switch Debouncer 161

8.11.4 Reference-Value Definer 163

8.11.5 Traffic Light Controller 166

8.11.6 Car Alarm (with Chirps) 167

8.11.7 Password Detector 168

8.11.8 Triggered Circuits 170

8.11.9 Pulse Shifter 172

8.11.10 Pulse Stretchers 173

Exercises 176

VHDL Design of Timed (Category 2) State Machines 185

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Introduction 185

VHDL Template for Timed (Category 2) Moore Machines 185
VHDL Template for Timed (Category 2) Mealy Machines 189
Design of a Light Rotator 191

Design of a Car Alarm (with Chirps) 194

Design of a Triggered Monostable Circuit 198

Exercises 201

SystemVerilog Design of Timed (Category 2) State Machines 207

10.1
10.2
10.3
104
10.5
10.6
10.7

Introduction 207

SystemVerilog Template for Timed (Category 2) Moore Machines
SystemVerilog Template for Timed (Category 2) Mealy Machines
Design of a Light Rotator 212

Design of a Car Alarm (with Chirps) 214

Design of a Triggered Monostable Circuit 217

Exercises 220

Contents

207
210

Contents

11

12

13

14

Recursive (Category 3) State Machines 221
Introduction 221
Recursive (Category 3) State Machines

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Architectures for Recursive (Category 3) Machines
224

Category 3 to Category 1 Conversion

Repetitively Looped Category 3 Machines

Number of Flip-Flops 226
Examples of Recursive (Category 3) State Machines

11
11
1
1
11
11
11
11

71
72
M3
7.4
D
7.6
St
7.8

Generic Counters 226
Long-String Comparator 228
Reference-Value Definer 229

Reference-Value Definer with Embedded Debouncer

223

Datapath Control for a Sequential Multiplier

Sequential Divider 234
Serial Data Receiver 236
Memory Interface 237

11.8 Exercises 240

VHDL Design of Recursive (Category 3) State Machines
Introduction 245

12.1
12.2
12.3
12.4
12:5
12.6
12.7

SystemVerilog Design of Recursive (Category 3) State Machines

131
13.2
13.3
13.4
13.5
13.6
13.7

VHDL Template for Recursive (Category 3) Moore Machines

226

232

245

VHDL Template for Recursive (Category 3) Mealy Machines

Design of a Datapath Controller for a Multiplier

Design of a Serial Data Receiver 252
Design of a Memory Interface 256
Exercises 261

Introduction 265

SystemVerilog Template for Recursive (Category 3) Moore Machines

249

231

245
248

265

SystemVerilog Template for Recursive (Category 3) Mealy Machines

Design of a Datapath Controller for a Multiplier

Design of a Serial Data Receiver 271
Design of a Memory Interface 273

Exercises

278

Additional Design Examples 279
LCD Driver 279
14.1.1

14.1

14.1.2 Typical FSM Structure for Alphanumeric LCD Drivers

Alphanumeric LCD 279

268

283

14.1.3 Complete Design Example: Clock with LCD Display 284

265
267

15

14.2

14.3

14.4

I’C Interface 290

14.2.1 1°C Bus Structure 290

14.2.2 Open-Drain Outputs 291

14.2.3 I°C Bus Operation 292

14.2.4 Typical FSM Structure for I’C Applications 295

14.2.5 Complete Design Example: RTC (Real-Time Clock) Interface

SPI Interface 305

14.3.1 SPI Bus Structure 305

14.3.2 SPI Bus Operation 306

14.3.3 Complete Design Example: FRAM (Ferroelectric RAM)
Interface 307

Exercises 315

Pointer-Based FSM Implementation 319

15:1
15.2
15.3
15.4
15:5
15.6

Bibliography

Index

333

Introduction 319

Single-Loop FSM 319

Serial Data Transmitter 321
Serial Data Receiver 322

SPI Interface for an FRAM 325
Exercises 329

331

Contents

296

1 The Finite State Machine Approach

1.1 Introduction

This chapter presents fundamental concepts and introduces new material on the finite
state machine (FSM) approach for the modeling and design of sequential digital
circuits.

A summary of the notation used in the book is presented in table 1.1.

1.2 Sequential Circuits and State Machines

Digital circuits can be classified as combinational or sequential. A combinational circuit
is one whose output values depend solely on the present input values, whereas a
sequential circuit has outputs that depend on previous system states. Consequently,
the former is memoryless, whereas the latter requires some sort of memory (generally,
D-type flip-flops [DFFs], reviewed in section 2.2).

An example of a combinational circuit is presented in figure 1.1a, which shows
an N-bit adder; because the present sum is not affected by previous sums computed
by the circuit, it is combinational. An example of sequential circuit is depicted in
‘figure 1.1b, which shows a synchronous three-bit counter (it counts from 0 to 7);
because its output depends on the system state (for example, if the current output is
5, then the next will be 6), it is a sequential circuit. Note the presence of a clock signal
in the latter.

An often advantageous model for sequential circuits is presented in figure 1.2a,
which consists of a combinational logic block in the forward path and a memory
(DFFs) in the feedback loop. When this architecture is used, a finite state machine (FSM)
results. Note that the state presently stored in the memory is called pr_state, and
the state to be stored by the DFFs at the next (positive) clock transition is called
nx_state.

An example of such a modeling technique is depicted in figure 1.2b, which shows
the same circuit of figure 1.1b, now reorganized according to the architecture of

Table 1.1

Chapter 1

Item

Representation

Examples

Signal names

In italic

a, x, clk, rst, ena, WE

Active-low signal names

In italic, followed by an n

WERn, rstn, rst_n

Single-bit values Within a pair of single quotes 0,1, XL -, 7
Multi-bit values Within a pair of double quotes "00", "1000", "ZZZZ"
Integers Without quotes 1000, 5, 256
Allowed bit values '0" or L' for low logic level y="0"ory="L"

1" or 'H' for high logic level y="1"ory="H'

X' or '~ for “don’t care” y=X'ory="-

'Z' for high impedance y=Z

Bit indexing (outside
VHDL or SystemVerilog
codes)

Between parentheses, with a colon

x(7:0) means that x has 8 bits,
x(7) is the most significant bit,
x(0) is the least significant bit

Reset and clear signals

- Called reset (rst) when asynchronous (resets
the circuit regardless of the clock)

- Called clear (clr) when synchronous (effective
only at the proper clock edge)

if rst="1"then ...
if clr="1"then ...

Transition conditions in
state diagrams

& means and

| means or

! and # mean not or different

~ (bar) and ' mean not or inversion

'X' and - mean “don’t care” for a single-bit value

"XX..."and "~ -..." mean “don’t care” for a
multi-bit value

— means “don’t care” for an integer

ifa='1"&b="0"then ...

ifa="'1"| b="0"then ...

if xI=athen ... orif x#athen ...

y=x'

x="1"&y="-

If(@a="111" & b="0-0") |
¢="000" then ...

m=58&n=-

a(N-1:0) =i
+ - SUM(N:0)
D(N-1:0) mip]
(a) N-bit adder
Figure 1.1

> r>

clk—m

. A
LDC*do 9o Dre o —LD—LJD d2 g2
i

Ll es

1

(b) Synchronous 3-bit counter

Examples of (a) combinational and (b) sequential circuits.

