INSTRUMENTATION AND MIEEASUREMENT SERIES

\ ‘\“\‘lil‘li\'ll.l.-l.-ll-.
W aumae e w e

Uncertainty Theories
and Multisensor

Data Fusion

Alain Appriou




Uncertainty Theories and
Multisensor Data Fusion

Alain Appriou

SSle= WILEY




First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2014

The rights of Alain Appriou to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2014938199

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-354-8

y MIX
rmondbl-m
sources
E.%S:, FSC® C013604

Printed and bound in by CPI Group (UK) Ltd., Croydon, CRO4YY



Uncertainty Theories and Multisensor Data Fusion



To Chantal

“It is not certain that everything is uncertain”

— Blaise Pascal



Introduction

Combining multiple sensors in order to better grasp a
tricky, or even critical, situation is an innate human reflex.
Indeed, humans became aware, very early on, of the need to
combine several of their senses so as to acquire a better
understanding of their surroundings when major issues are
at stake. On the basis of this need, we have naturally sought
to equip ourselves with various kinds of artificial sensors
to enhance our perceptive faculties. Even today, we continue
to regularly exploit new technologies, which allow us to
observe more things, to see further, more accurately and
more surely, even in the most adverse conditions. The
resulting quantity and variety of information produced are
beyond our capacity for interpretation. Proper use of a set of
sensor equipment, therefore, is very closely linked to the
performance of the processing necessary to draw the
expected benefit from the available data — particularly in
terms of data fusion and construction of information that
serves the operational needs.

The development of these processing capabilities,
however, must integrate a number of aspects relating to the
changing context in which they are employed. The first
relates to technological advances in the sensors used, and
the resulting change in the nature of the data to be
exploited. The performances of these processes are
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continuously being improved — mainly in terms of the spatial
precision of scanning, acuity of reconstruction of the physical
values at play, or reliability. In parallel to this, the domain
in which sensors are used is growing, particularly because
the sensors themselves are shrinking (being miniaturized),
becoming compatible with onboard systems, and becoming
increasingly robust in difficult environments, and are
therefore able to acquire a different type of information.
Finally, new observation techniques are constantly
emerging, typically enabling us to analyze a wider variety of
physical characteristics (wavelengths used and wave forms
exploited, etc.), with increasingly agile acquisition
capabilities, and spatial deployment in more extensive
networks.

Another major tendency which needs to be taken into
account relates to the integration of an increasing number of
sensors in ever-more-complex systems, where a wide variety
of independent components must interact intelligently. Such
is the case with “systems of systems” developed for defense
purposes — particularly in the context of network centric
warfare, the aim of which is to network all means of
observation, command and intervention. Another example is
security, where the concept of homeland security has
gradually evolved into that of global security, which involves
the pooling, regardless of geographical borders, of means of
surveillance, information, decision support and security. The
deployment of all these systems requires a wide range of
very specific information to be gleaned from a set of distinct,
and isolated, observations, and then transmitted in an
appropriate form to their point of use.

Autonomous “smart” systems also represent an area of
major progression. Whether in terms of robotics in general,
or more specifically in terms of deployment of autonomous
land, air or sea craft, a system’s decision-making autonomy
relies on critical observation and interpretation of its
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environment. Functions that the system has to fulfill, can be
very diverse: navigation, observation, reconnaissance,
planning, intervention, etc. This necessitates the
development of a high-level perceptive capability, able to
provide a circumstantial understanding of the very varied
situations that may be encountered — often on the basis of
insufficient observable data.

Decision support is another area where the variety and
complexity of problems require constant advances to be
made. Whether in terms of medical diagnosis, technical
expertise, intelligence, security operational support or
surveillance, the objective is to reconstruct poorly defined
cognitive data using multiple observations which are
generally difficult to interpret.

What all of these fields of application share is that they
require collaborative processing of a large number of factors
from a vast quantity of data, particularly disparate both in
terms of their nature and quality, to deduce higher-level
information whose connection to the available data is often
imperfectly defined. It is therefore wuseful to design
processing techniques capable of adapting to the
imperfections of the input data on the basis of the objectives
at hand. These imperfections are very diverse in type, as
each observation has its own strong points and weak points,
depending on the use we make of it. Weak points, for
example, include uncertainty about a poorly defined event,
inaccuracy with regard to a value that is difficult to
estimate, incompleteness in terms of partially unobservable
phenomena, or lack of reliability due to the use conditions.

The quality of a particular data processing technique is
therefore directly linked to its ability to handle imperfections
in the information at all levels in order to make fuller and
better use of the truly meaningful content, without being
confused by imperfect knowledge, whatever form it may
take. The solution to this requirement will thus inevitably



xii  Uncertainty Theories and Multisensor Data Fusion

originate in a set of theories commonly referred to as
“uncertainty theories”.

The oldest of these theories, and that which is most widely
used in commercial systems today, is the well-known
probability theory. Devoted to handling uncertainty, i.e.
estimating the likelihood of an event occurring, it is relatively
simple to use, and lends itself well to the processing of signals
and images delivered by sensors. Yet as we will see, given the
complexity of the situations mentioned above, its limitations
soon become apparent — particularly when it becomes difficult
to create a reliable probabilistic model.

Another theory is the “Fuzzy sets” theory, established
by Zadeh in 1965 in his seminal article of the same name
[ZAD 65]. Complementing the previous theory fairly well,
this relatively easy-to-understand theory aims to deal with
the imprecision of the values used, i.e. only an approximate
knowledge of these values. This technique, which can be
used to develop reasoning as well as robust control for
systems that are highly nonlinear or difficult to identify,
quickly became very successful because of its ease of use, and
the fact that it very immediately and naturally takes account
of the available data.

Zadeh used this as the basis for the construction of his
possibility theory, which is specifically devoted to handling
uncertainty about events. More flexible than the probability
theory, and perfectly compatible with the uncertainty
handling for which the Fuzzy sets theory is designed, this
approach enables the user to conduct complex reasoning
processes by adapting to what knowledge is available.

In a very similar train of thought, another theory
emerged, in parallel to those mentioned above, from
Dempster’s early work on “upper and lower probabilities
induced by a multivalued mapping” in 1967 [DEM 67]. Using
this work as a springboard, in 1976, Shafer, in his book A
Mathematical Theory of Evidence [SHA 76], laid the
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foundations for the belief functions theory. This theory is
more powerful than the previous theories in terms of
richness of analysis, both of uncertainty and imprecision. We
will see, in particular, that probabilities and possibilities are
two different specific examples of belief functions, making
this theory a general and overarching framework to jointly
process data very diverse in nature. However, it is more
complex to use, and in particular, the interpretation of
specific problems in this form is much more challenging. This
difficulty meant that for years, belief functions were ignored,
before beginning to be used very subjectively for qualitative
reasoning processes. Driven by the evolution of requirements
as discussed above, a certain number of publications in the
1990s were finally able to develop practical tools for data
modeling and implementation for real-world applications.
This led to the rise of a community of researchers who,
though they subscribed to slightly different schools of
thought, have now achieved a fairly full command of these
techniques. This community began to come together and
organize effectively in the 2000s — primarily in France.
Indeed, the success of a number of national conferences on
belief functions led to the founding, in 2010, of an
international society (the Belief Functions and Applications
Society) and correlatively the organization of the earliest
international events entirely devoted to the theory (the
International Workshop on the Theory of Belief Functions in
2010 and the Spring School on Belief Functions Theory and
Applications in 2011).

Evidently, these different theories were not initially
developed for data fusion (in particular, multisensor data
fusion). Hence, the aim of this book is to identify the specific
and joint contributions which can be drawn from these
theoretical frameworks in order to serve the needs
expressed, and to create a coherent set of tools for
multisensor data processing. This work fits in perfectly with
the concern with data fusion which has regularly brought
(and continues to bring) the scientific community together
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since the 1998 founding of the International Society on
Information Fusion, whose annual conference “FUSION” has
a growing attendance and impact, and the International
Journal on Information Fusion.

With this in mind, it is appropriate to begin with a
chapter that clearly defines the different aspects of the topic
of “multisensor data fusion” and the requirements inherent
in it. The basic principles of the different theories are then
set out and compared in Chapter 2. The subsequent chapters
each discuss a particular function in detail, in an order
which lends itself to the gradual construction of a consistent
set of operators. At each turn, we examine the solutions
which can be developed in each theoretical framework, either
from a competitive point of view or combining different
solutions. The functions examined relate to the different
stages of the processing: data modeling, assessment of the
reliability of different information fragments, choosing of
frameworks for analysis and propagation of the information
from different viewpoints, combination of different sources or
decision-making in relation to the observed situation. The
deployment of complete processing techniques, dealing with
general issues such as the matching of ambiguous data or
the tracking of vehicles, is then discussed in the later
chapters, before drawing a conclusion as to the contribution
of uncertainty theories to multisensor data fusion.

At each stage, didactic examples are used to illustrate the
practical application of the proposed tools, their operation
and the performances that we can typically expect from them
for each of the problems at hand.

The discussion in these chapters gives an overview of the
scientific advances that the author has, for two decades, been
teaching in different contexts: the College de Polytechnique,
engineering  schools, international seminars, etc.,
capitalizing on an original, overarching view of the domain.
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Multisensor Data Fusion

1.1. Issues at stake

Why would anyone seek to combine multiple sensors
while this inevitably increases cost, complexity,
cumbersomeness and weight, etc.?

The first reason that often comes to mind is that we can
use multiple identical sensors to improve their performances.
Yet, if n sensors provide the estimation of the same value
with the same signal-to-noise ratio (SNR), at best, the joint
use of those n sensors will lead to a gain of +/» in relation to
that SNR, while multiplying by a factor close to n all the
material factors of the resulting system (cost, weight, bulk
etc.). Additionally, in such cases, there are often simpler and
more effective solutions available — particularly solutions
based on temporal integration of the data from a single
Sensor.

This example highlights the fact that combining multiple
sensors is only irrefutably advantageous in the production,
in specific conditions, of information, which a single sensor
(whatever its type) would be unable to provide. In practice,
in order to identify the situations where it is helpful, we
consider three categories of objectives that a multisensor
approach may serve. Each of these categories can be
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illustrated by looking at a few situations, where observation
and surveillance systems are used.

The first major benefit of multisensor systems is their
robustness in any observation context, which is usually a
decisive factor in the choice to use such systems. For example,
the system may be less vulnerable to disturbances — whether
intentional (counter-measures specifically targeted at a
particular wave form or wavelength, but that do not affect
those of the other sensors), or natural (atmospheric
phenomena that adversely affect one sensor but not the
others, such as multiple trajectories to a low site, and the
effect of an evaporation duct on radar, or atmospheric
transmission in optoelectronics). Other examples include the
ability to function in an environment or conditions of
observation that impede the operation of a single sensor, but
do not have the same effect if a variety of appropriate
observation devices are used simultaneously. Thus, various
types of weather-related disturbances, geometrical masking
effect, problems of spatial or radiometric resolution, or
limitations in detection range may render one of the sensors
(though not always the same one) non-operational. In the
same vein of ideas, there is also the problem of
representativeness of certain data used to train a given
sensor to later recognize specific objects, in relation to the
reality on the ground. If the training data used are not
representative, the only way to recognize the target objects is
by cross-referencing the data from different sensors.

The second point of superiority of multisensor systems is
the acuity and richness of the information gleaned. For
example, one sensor might discriminate between targets
independently of their size on the basis of the features of
their rotating parts, while another sensor, which is not
capable of observing these features, distinguishes them by
their size. The combination of the distinguishing capabilities
of these sensors will, obviously, help to refine the taxonomy



