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I}\ITRODUCTION

This conference is intended to reflect the newest research results, trends, and
developments in intelligent robots and computer vision. The emphasis in this
portion of ‘the tenth conference in this series is neural, biological, and 3-D
methods. See Volume 1607 for technical papers on algorithms and techmques
for intelligent robots and computer vision.

Over fifty papers from ten different countries are included, representing the truly
international flavoring of this volume. The eight sessions of this conference
address these three aspects of intelligent robot and computer vision systems.
Sessions 1 and 2 concern the reconstruction and modeling aspects of 3-D sensors.
Sessions 5 and 6 complement this with attention to 3-D scene perception using
ranging and stereo 3-D sensors.

Sessions 3 and 4 concern the biological vision aspects of machine vision, while
Sessions 7 and 8 contain a large set of neural net computer vision and robotics
papers.

[ thank my administrative assistant (Marlene Layton), and my program commit-
tee, plus all session chairs and authors who made this conference the success it was
and my job more enjoyable.

David Casasent
Carnegie Mellon University
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A "NON-RECONSTRUCTION" APPROACH FOR ROAD FOLLOWING

Daniel Raviv* and Martin Herman**

*Robotics Center and Electrical Engineering Department
Florida Atlantic University, Boca Raton, FL 33431; and
Sensory Intelligence Group, Robot Systems Division
National Institute of Standards and Technology

 Gaithersburg, MD 20899
+xSensory Intelligence Group, Robot Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT
This paper presents a new approach for vision-based autonomous road following. By building on
a recently developed optical-flow-based theory, we suggest that motion commands can be gen-
erated directly from a visual feature, or cue, consisting of the projection into the image of the
tangent point on the edge of the road, along with the optical flow of this point. Using this visual
cue, there is no need to reconstruct the 3-D scene, and the related computations are relatively sim-

ple. We suggest some vision-based partial control algorithms for both circular and non-circular -

roads.

1. INTRODUCTION

Algorithms for vision-based road following have recently been explored by many investiga-
tors [2, 3, 4, 8, 9, 10]. Most of them convert the information extracted from images into a 3-D,
vehicle-centered cartesian coordinate system aligned with the ground plane. Steering decisions are
then determined in this coordinate system. A 3-D reconstruction is therefore performed before
steering decisions are made.

This paper approaches the road following problem by building on the theoretical framework
of the recently developed visual field theory (5, 6]. This theory provides quantitative relationships
between a stationary 3-D environment and a moving camera. The theory involves pie-computing
the expected instantaneous optical flow values in the camera imagery arising from every point in
3-D space.

This paper suggests that for following curved, convex roads, the tangent point on the road
edge (i.e., the point on the road edge lying on an imaginary line tangent to the road edge and
passing through the camera) and its optical flow are sufficient to generate control commands.
Therefore, all image processing effort may be directed towards reliably finding and tracking the
tangent point and extracting its optical flow.

We show how to use use the location of the tangent point (in the image) and its optical flow
to generate steering wheel commands.

The control schemes presented are partial since only the kinematics of the vehicle and the
camera are considered. Also, stability, robustness and sensitivity issues are not considered in this

paper.

¢

0-8194-0745-3/92/$4.00




2. DEFINITIONS AND ASSUMPTIONS

2.1 ROAD FOLLOWING

We define a road as any continuous, extended, curvilinear feature. The goal of road follow-
ing is to follow along this feature over an extended period of time. In what we normally think of
as road following, a road is defined either by its boundaries or by an extended solid or dashed
white line. Here, the goal is not only to follow along these features but also to stay within a con-
stant lateral distance from these features. Vision-based road following requires the ability to con-
tinuously detect and track features in imagery obtained from an onboard camera, and to make
steering decisions based on visual properties of these features.

Figure 1 shows a point on a vehicle and the left-hand side road edge. The unit vector 4 is the
instantaneous heading of the vehicle, 0 is the instantaneous center of curvature of the vehicle
path, and r is the instantaneous radius of curvature of this path. We define road following as an
activity that involves servoing 4 such that it follows the road edge. It is desired that 4 be servoed
such that the vehicle is always parallel to the tangent to the local curvature of the road edge (Fig-
ure 1), and such that the distance s of a point on the vehicle from the road edge is maintained at a
constant value. In other words, the instantaneous center of curvature of the road edge and the
instantaneous center of curvature of the vehicle path should coincide, and the tangent to the edge
of the road at the intersection point B should be parallel to 4. In this paper, we assume that the
road is curved.

2.2 COORDINATE SYSTEM

The equations in this paper will be defined in a coordinate system which is fixed with respect
to the camera on board the vehicle. This coordinate system is shown in Figure 2. We assume that
the camera is mounted on a vehicle (later we explain how) moving in a stationary environment.
Assume a pinhole camera model and that the pinhole point of the camera is at the origin of the
coordinate system. This coordinate system is used to measure angles to points in space and to
measure optical flow at these points. We use spherical coordinates (R -6--¢) for this purpose. In this
system, angular velocities (6 and ¢) of any point in space, say P, are identical to the optical flow
values at P’ in the image domain. Figure 3 illustrates this concept: 6 and ¢ of a point in space are
the same as 6 and ¢ of the projected point P’ in the image domain, and therefore there is no need
to convert angular velocities of points in 3D space to optical flow. In Figure 3 the image domain
is a sphere. However, for practical purposes the surface of the image sphere can be mapped onto
an image plane (or other surface). '

2.3 TWO-WHEELED VEHICLE

In this paper, we use a theoretical two-wheeled vehicle as illustrated in Figure 4. A rigid
frame of length 2m holds both wheels. A steering wheel angle is applied to both wheels simultane-
ously, i.e., if one wheel is rotated by an angle B relative to the frame, the other wheel will rotate
by the same angle. This apparatus assures that both wheels will always stay at the same distance
from the instantaneous center of curvature of the vehicle’s path. The camera is mounted such that
its pinhole point is located above the front wheel center, and it rotates with the front wheel. The
optical axis of the camera coincides with the instantaneous translation vector (heading) of the front
wheel.

The following geometrical relationship holds for the vehicle in Figure 4:
J sinf3
The frame length m is usually known. Thus the instantaneous radius of curvature r of the vehicle
path can be determined by measuring the steering angle p.

SPIE Vol. 1608 Intelligant Robots and Computer Vision X (1991) / 3



Figure 5 is an overall description of the system including the spherical coordinate system. For
convenience we chose to have the Z axis pointing down. However the same coordinate system as
described in Figure 2 is used here. The camera is mounted at some height above the ground and
rotates with the front wheel. The position of any point on the road can be expressed with the coor-
dinates R 0 and ¢, as shown in Figure 5.

In the following analysis, we assume a moving vehicle in a stationary environment. The road
is assumed to be planar, and road edges are assumed to be extractable. Figure 11 shows examples
of road images obtained from a camera mounted on a vehicle.

3. VISUAL FIELD THEORY

We have recently developed a new visual field theory that relates six-degree-of-freedom cam-
era motion to optical flow for a stationary environment [5, 6]. The theory describes the structure
of a field in 3-D space consisting of contours and surfaces surrounding the moving camera. The
field is always centered at the camera pinhole point and moves with the camera. The structure of
the field changes as a function of the instantaneous camera motion.

This theory provides us with a theoretical and scientific basis for developing constraints, con-
trol schemes, and optical flow-based visual cues for road following. This section reviews this
theory as it relates to the road following problem.

3.1 EQUATIONS OF MOTION AND OPTICAL FLOW

Let the instantaneous coordinates of the point P be R=(X.Y Z)", where the superscript T
denotes transpose (Figure 2). Assuming the instantaneous translational velocity of the camera is
t=(U,V. W) and the instantaneous angular velocity is o = (A4,B,C)" then we have shown that the
optical flow of point P can be expressed as [7]:

=Y X 0
[ X242 X242 -U-BZ+CY
o= -V-CX+AZ
o XZ ¥z VX2 X+

= et L —W-AY +BX
VXTI rzY)  NXBYAX2+Y24ZY) XYz "

2

where dot denotes first derivative with respect to time. As mentioned earlier, & and ¢ of a point in

space (i.e., the angular velocities in the camera coordinate system) are the same as the optical
flow components 6 and ¢ (Figure 3).

_ Suppose that we want to determine the locus of points in 3-D space that produce constant
optical flow values 6 and constant optical flow values ¢ in the image for a given arbitrary six-
degree-of-freedom camera motion. To do so we simply set 6 and ¢ in equation set (2) to the

- desired constants and solve for X, Y, and Z. However, the solution to these two equations is not
unique since there are three unknowns and two equations. In general, there is an infinite number
of solutions.

3.2 A SPECIAL CASE

In this section we analyze a specific motion in the instantaneous XY (¢ = 0) plane of the cam-
era coordinate system.

Let the camera motion vectors t and o be given as follows:
t=(U.V.0" 3)
®=(00C)". : )

This means that the translation vector may lie anywhere in the instantanous XY plane while the
rotation is about the Z-axis. Substituting these motion vectors into equation set (2) yields:

4 / SPIE Vol. 1608 Intelligent Robots and Computer Vision X (1991) '
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Setting 6 and ¢ in equation set (5) to constants will result in a set of equal flow points for this
specific motion.

Consider the case where the optical flow value of § is constant. From equation set (5), the
points in space that result from constant & (regardless of the value of ¢) form a cylinder of infinite
height whose equation is

2 2 2
[X+ V.]-i—[}'— U.]:[ V.]+[ U.
2(C+6) 2(C+0) 2(C+0) 2(C+0)

as displayed in Figure 6.

The meaning of equation (6) is the following: all points in 3-D space that lie on the cylinder
described by Equation (6) and which are visible (i.e., unoccluded and in the field of view of the
camera) produce the same instantaneous horizontal optical flow 8. We call the cylinder on which
equal flow points lie the equal flow cylinder.

3.3 ZERO FLOW CYLINDERS

One of the equal flow cylinders corresponds to points in 3-D space that produce zero hor-
izontal flow. We call this cylinder a zero flow cylinder. The equation that describes the zero flow
cylinder can be obtained by setting 6 = 0 in Equation (6), i.e.,

v 2 U 2 v 2 U 2 '
— - == +|=—=|. 7
[X+ 2c] il 2c] [2c} +[2c] ' g,
We have shown [5] that if the z component of the camera rotation vector @ is positive gi:e.,
C >0), then visible points in the Xy plane that are inside-the zero flow cylinder produce positive
horizontal optical flow (@ > 0), while visible points outside the zero flow cylinder produce negative

horizontal optical flow (8 <0) in the image (see Figure 7). If @ is negative (i.e., C >0) then the
opposite is true.

3.4 EQUAL FLOW CYLINDERS AS A FUNC’i‘ ION OF TIME

As the camera moves through 3-D space, the equal flow cylinders move with it. Figure 8
shows sections of equal flow cylinders as a function of time. At each instant of time, the radii of
the equal flow cylinders are a function of the instantaneous motion parameters t and . The loca-
tions of the equal flow cylinders are such that they always contain the origin of the camera coor-
dinate system (the same as the camera pinhole point), are tangent to the instantaneous translation
vector t, and their symmetry axes are parallel to the instantaneous rotation vector . (In Figure 8,
the direction of w varies over time.) Each zero flow cylinder lies to the left or right of the transla-
tion vector depending on whether the instantanous rotation is positive or negative, respectively.

4. ANALYSIS OF ROAD FOLLOWING

We describe two road following scenarios. The first one is for a circular road, where we out-
line basic geometric and motion-related relationships. Using this relatively simple case, we
explain the problem of following a road using a vision sensor, problems associated with it, and
relate it to the visual field theory described above. We also suggest road following control
approaches. The second road following scenario is for an arbitrary convex curved road, where we
also suggest control approaches.

2
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4.1 CIRCULAR ROAD

In this section, we consider following along a circular road. Given visual cues,.a goal of a
control system is to find the steering angle. If the vehicle is already on a path that follows the
road, then only changes in steering angle are necessary. Figure 9 shows a vehicle moving around
a circular road of radius /. The path traversed by the vehicle is a circle of radius ». Let the unit
vector ¢ indicate the direction of the tangent line, a line that contains the camera pinhole point and
is tangent to the road edge. '

It can be proved [7] that the tangent point T lies on the instantaneous zero flow cylinder if
the camera orientation is fixed relative to the vehicle. This proof holds no matter what the diame-
ter of the circular road edge. This means that no matter how far the vehicle is from the road edge
(Figures 10 and 11a), the tangent point lies on the zero flow cylinder. Thus the horizontal com-
ponent of optical flow of the tangent point is always zero.

In Figure 9, therefore, the optical flow @ due to point T is zero. Let the distance from the
vehicle to the road edge be s, and let 6 be the positive angle to + measured from the X -axis. From
Figure 9, the following relationships hold:

I =r sind (8)
s = r-1 = r(1-sin®) ()

Differentiating Equation (8) with respect to time:
[ = Fsin® + 7Bcosd : (10)

where dot denotes derivative with respect to time. For a circular road, I is constant, and thus [
can be set to zero in Equation (10): :

0 = Fsin® + 0 cosd
F=-r0coth (1)

When the vehicle is moving on a perfect circular path both 7 and 6 are equal to zero. However,
suppose the vehicle’s path is not a perfect circle. Since r is the instantaneous radius of curvature
of the vehicle motion, # is the rate at which the curvature changes. Equation (11) suggests a way
of controlling the vehicle motion so as to achieve a constant circular motion. Consider the two-
wheeled vehicle described in Section 2.3. From Equation (1), we can derive the following:

B= sin“(%). (12)

Equation (12) gives a value of the steering angle B as a function of the instantaneous radius of
curvature r and the distance 2m between the two wheels. Normally the value m is known. For a
more realistic vehicle (such as a four-wheeled vehicle with front-wheel steering), some other rela-
ticnship may hold. ‘

In Equation (11), 7 is the rate at which the radius of curvature of the vehicle motion is
changing. We can express # as a function of the steering angle B by differentiating Equation (1)
with respect to time: :

5= moosh g - (13)
‘. sin“B
Substituting Equations (13) and (1) into-(11) and solving for B :
' “p=0dunpcord (14)

Equation (14) suggests a partial control scheme whose inputs are the current steering angle p, the
current angle 6 of the tangent line relative to the X-axis, and the optical flow 6 of the tangent
point. All of these inputs can be measured. The variable being computed is the rate of change of
the steering angle, B. quugfionf’(ld,)/p'rovides the gain tanBcot® by which 6 should be multiplied in
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order to get'the correct change in steering wheel angle. This gain depends on the current steering
wheel angle B and the angular location 8 of the tangent point in the image.

Figure 11b shows a sequence of images taken from a camera mounted on a vehicle. The
images in the figure are numbered in the same order in which they were taken. The road is almost
circular. Note that the tangent point (almost) stays at the same location in each image in the
sequence. If the road were perfectly circular and the vehicle were moving on a perfect circular
path, then the position of the tangent point would not change from image to image. However, if
the vehicle’s path is not a perfect circle, then its steering can be controlled by measuring horizon-
tal changes in the position of the tangent point. These changes are the horizontal component of
optical flow at that point, and can be used to generate changes (B) in the steering wheel command
B. .

It is important to emphasize that the derivation of B takes into account the kinematics of the
system but not the dynamics. This is also the reason why we emphasize that the control scheme
is not complete.

If the rate of change of the steering angle, B, is the only variable being controlled (as indi-
cated in Equation (14)), then in practice the vehicle may not maintain a constant distance from the
edge of the road. Therefore, in addition to Equation (14), Equation (9) can also be used to control
the vehicle to achieve a constant circular motion. Substituting Equation (1) into (9):

s = 1-sin6)

m
P

or | ' :
B= sin"[?(l—sine)] (15)

Equation (15) suggests a partial control scheme whose inputs are the measured angle 6 of the
tangent line relative to the X-axis, the desired distance s of the vehicle from the road edge, and
the distance 2m between the front and rear wheels. The variable being computed is the steering
angle B.

The control signals (B and B) and partial control schemes suggested above assume that the
road is circular, that the center of curvature of the vehicle path coincides with the center of curva-
ture of the circular road, and that the road is planar. It is also assumed that the tangent point (in
the image) is traceable, and that the vehicle heading coincides with the camera optical axis. There
are several advantages to this approach: (1) it is simple and therefore computationally inexpensive,
(2) it is independent of the speed of the vehicle, (3) it is independent of the camera height above
the road, (4) only a few measurements are necessary to control the vehicle, and (5) only a very
small portion of the image -- the portion around the tangent point -- needs to be analyzed, in prin-
ciple. (Of course, item (5) may not be true in practice since larger portions of the road may have
to be extracted in order to reliably find the tangent point.)

4.2 CURVED ROAD FOLLOWING

In this section, we consider road following for the case where the curvature of a convex road
is not constant. Figure 12 shows two cases. In Figure 12a the radius of curvature increases as the
vehicle moves. In Figure 12b, the radius of curvature decreases. In Figure 12a, let the current
instantaneous center of curvature of the vehicle path be at 0. If the road curvature were constant
(indicated by an imaginary road shown as a dotted line in Figure 12a), then the point of tangency
of the vector 1 would lie on this imaginary road, and this point would lie on the zero flow
cylinder. However, because the road’s curvature is changing, the point of tangency is at 7. Notice
that the point T lies on some equal flow cylinder whose 6 optical flow is negative (T lies outside
the zero flow cylinder). If the radius of curvature were decreasing (Figure 12b), the tangent point
would lie inside the zero flow cylinder, and its 8 optical flow would be positive. Therefore, intui-
tively, if the horizontal component of the optical flow, 6, at the tangent point is measured, then its
value can be used as a control signal for steering the vehicle. If 6 is negative (Figure 12a) then the
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steering command is to increase the radius of curvature of the vehicle’s current motion. If 6 is
positive (Figure 12b), then the steering command is to decrease the radius of curvature of the
vehicle’s current motion by sharpening the turn. _

5. CONCLUSION

In this paper, we have shown that, in principle, a road feature sufficient for following curved,
convex roads is the location of the tangent point on the road edge as projected on the image and
its optical flow. In practice, larger portions of the road may have to be extracted in order to reli-
ably find the tangent point. We also showed that fast, simple control approaches are possible that
directly use measured image quantities.

The partial control schemes presented in this paper have not been implemented yet. Current
and future work will be directed towards implementing control algorithms that use the approaches
suggested in this paper [11]. Issues such as the dynamics of the vehicle; sensitivity, stability,
robustness, and time delays must be considered when developing control algorithms for real vehi-
cles.
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Figure 3. Image domain.

Figure 2. Coordinate system fixed to camera.
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Figure 4. Two-wheeled vehicle with camera.
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