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UNIT 1

INFCRMATION THEORY

Text: Introduction to Information Theory

Information theory answers two fundamental questions in communication theory:
What is the ultimate data compression (answer: the entropy H), and what is the ultimate
transmission rate of communication (answer: the channel capacity C). For this reason
some consider information theory to be a subset of communication theory. We argue that it
is much more. Indeed, it has fundamental contributions to make in statistical physics
(thermodynamics), computer science (Kolmogorov complexity or algorithmic complexi-
ty), statistical inference (Occam’s Razor: “The simplest explanation is best”), and to
probability and statistics (error exponents for optimal hypothesis testing and estimation).

This chapter goes backward and forward through information theory and its naturally
related ideas. Information theory intersects physics (statistical mechanics), mathematics
(probability theory), electrical engineering (communication theory), and computer science
(algorithmic complexity). We now describe the areas of intersection in greater detail.

Electrical Engineering (Communication Theory). In the early 1940s it was thought to
be impossible to send information at a positive rate with negligible probability of error.
Shannon surprised the communication theory community by proving that the probability of
error could be made nearly zero for all communication rates below channel capacity.

The capacity can be computed simply {rom the noise characteristics of the channelt,
Shannon further argued that random processes such as music and speech have an irreducible
complexity below which the signal cannot be compressed. This he named the entropy, in
deference to the parallel use of this word in thermodynamics, and argued that if the entropy
of the source is less than the capacity of the channel, asymptotically error-free communica-

tion can be achieved.
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Information theory today represents the extreme points of the set of all possible com-

munication schemes. The data compression minimum 1(X;X) lies at one extreme of the set
of communication ideas. All data compression schemes require description rates at least e-
qual to this minimum. At the other extreme is the data transmission maximum I(X;Y),
known as the channel capacity. Thus, all modulation schemes and data compression
schemes lie between these limits.

Information theory also suggests means of achieving these ultimate limits of communi-
cation. However, these theoretically optimal communication schemes, beautiful as they
are, may turn out to be computationally impractical. It is only because of the computation-
al feasibility of simple modulation and demodulation schemes that we use them rather than
the random coding and nearest-neighbor decoding rule suggested byShannon’s proof of the
channel capacity theorem. Progress in integrated circuits and code design has enabled us to
reap some of the gains suggested by Shannon’s theory. Computational practicality was fi-
nally achieved by the advent of turbo codes. A good example of an application of the ideas
of information theory is the use of error-correcting codes on compact discs and DVDs,

Recent work on the communication aspects of information theory has concentrated on
network information theory: the theory of the simultaneous rates of communication from
many senders to many receivers in the presence of interference and noise, Some of the
trade-offs of rates between senders and receivers are unexpected, and all have a certain
mathematical simplicity. A unifying theory, however, remains to be found.

Computer Science (Kolmogorov Complexity). Kolmogorov, Chaitin, and Solomonoff
put forth the idea that the complexity of a string of data can be defined by the length of the
shortest binary computer program for computing the string. Thus, the complexity is the
minimal description length. This definition of complexity turns out to be universal, that is,
computer independent, and is of fundamental importancet?. Thus, Kolmogorov complexi-
ty lays the foundation for the theory of descriptive complexity. Gratifyingly, the Kolmog-
orov complexity K is approximately equal to the Shannon entropy H if the sequence is
drawn at random from a distribution that has entropy H. So the tie-in between information
theory and Kolmogorov complexity is perfect. Indeed, we consider Kolmogorov complexity
to be more fundamental than Shannon entropy. It is the ultimate data compression and
leads to a logically consistent procedure for inference.

There is a pleasing complementary relationship between algorithmic complexity and
computational complexity. One can think about computational complexity (time complexi-
ty) and Kolmogorov complexity (program length or descriptive complexity) as two axes
corresponding to program running time and program length. Kolmogorov complexity focu-

ses on minimizing along the second axis, and computational complexity focuses on minimi-
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zing along the first axis. Little work has been done on the simultaneous minimization of the
two.

Physics(Thermodynamics). Statistical mechanics is the birthplace of entropy and the
second law of thermodynamics. Entropy always increases. Among other things, the second
law allows one to dismiss any claims to perpetual motion machines.

Mathematics( Probability Theory and Statistics). The fundamental quantities of infor-
mation theory—entropy, relative entropy, and mutual information—are defined as func-
tionals of probability distributions®). In turn, they characterize the behavior of long se-
quences of random variables and allow us to estimate the probabilities of rare events (large
deviation theory) and to find the best error exponent in hypothesis tests.

Philosophy of Science (Occam’s Razor). William of Occam said “Causes shall not be
multiplied beyond necessity,” or to paraphrase it, “The simplest explanation is best. ” ]
Solomonoff and Chaitin argued persuasively that one gets a universally good prediction pro-
cedure if one takes a weighted combination of all programs that explain the data and ob-
serves what they print next. Moreover, this inference will work in many problems not han-
dled by statistics. For example, this procedure will eventually predict the subsequent digits
of r. When this procedure is applied to coin flips that come up heads with probability 0. 7, this
too will be inferred. When applied to the stock market, the procedure should essentially
find all the “laws” of the stock market and extrapolate them optimally. In principle, such a
procedure would have found Newton’s laws of physics. Of course, such inference is highly
impractical, because weeding out all computer programs that fail to generate existing data
will take impossibly long. We would predict what happens tomorrow a hundred years from
now.

Economics (Investment). Repeated investment in a stationary stock market results in
an exponential growth of wealth. The growth rate of the wealth is a dual of the entropy
rate of the stock market. The parallels between the theory of optimal investment in the
stock market and information theory are striking. We develop the theory of investment to
explore this duality.

Computation vs, Communication. As we build larger computers out of smaller compo-
nents, we encounter both a computation limit and a communication limit. Computation is
communication limited and communication is computation limited. These become inter-
twined, and thus all of the developments in communication theory via information theory

should have a direct impact on the theory of computation.
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New Words and Phrases

transmission n. {&#y

subset n. T4

thermodynamics n. #J1%

algorithmic adj. BH

statistical inference Gt itHEHT

exponent n. f5%X

optimal adj. FAEH, HILH

hypothesis n. &%

intersect vi. & X, A

complexity n. EZ4F

universal adj. @K, T EZ/, EHLO,
FH

intersection n. 324

mutual adj. HHER], FLFEH

negligible adj. /N ; 7] ZB&HY

irreducible adj. ARESMEH]

entropy n. i

probability n. 3%

deference n. JM; HE

asymptotically adv. @i

modulation n. ¥l

feasibility n. AJ471E

Notes

integrated circuit £ il H %
reap vt. & wvi. WIK
turbo code turbo Z@h
simultaneous adj. [E|RfH), [RI2ER)
trade-off n. U
unifying vt. {#4—
binary adj. i, —JGH)
tie-in n. 3k
compression n. JE4g
complementary adj. HAM, *MFEH
axis n. HH. HHZR
perpetual motion 7K {HIZ 5]
deviation n. fRZ=; 1WIn]
subsequent adj. J5XH), BHEH
extrapolate vz. & wvi. HEWT, HE
optimally adj. FfE
weed out @Ik, Sk
exponential n. F5%X
dual n. ¥H&

adj. FEEH)
intertwine vi. & vt. 4, 4|
theorem n. FH

1. The capacity can be computed simply from the noise characteristics of the channel.
(fFif) 78 S AEER SRR T,

2. Thus, the complexity is the minimal description length, This definition of complex-

ity turns out to be universal, that is, computer independent, and is of fundamental impor-

tance.

ik, &R/ MR, XAEREE O, Wi, 5B
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3. The fundamental quantities of information theory—entropy, relative entropy, and
mutual information—are defined as functionals of probability distributions.
(EEEMEAR—F. HXHE. BEE——80E S SR A Q) K%L

4. (Occam’s Razor) “Causes shall not be multiplied beyond necessity,” or to para-

phrase it, “The simplest explanation is best. ”

“INCLE, J)%H”, WHtR “RPRRRRER RGN,

Occam’s Razor B-K38%I 71 R . QURVRA P JEEE, & {730 RE A% B0 I 2 i 95 5K
AR 2R %A F R BB, AR AE ZRYIESE . X TR EE R MREE L E &1
fEREEIERR . WURREPI DKLU TR, EERRER . & ERD RN RERA
REJRIEBERY

Exercises

I . Please translate the following words and phrases into Chinese.

error-correcting
probability theory
algorithmic complexity
large deviation theory
random processes
modulation schemes

statistical inference

negligible probability

I. Fill in the blanks with the missing word(s) from the table below.

theorem compression elements length
capacity entropy random probability
codes parallels transmission mutual
defined block output exponent
continuous duality redundancy constructing
satisfy ratio capacity concept

1. The relative

D arises as the

in the probability of error in a hy-

pothesis test between two distributions. It is a natural measure of distance between distri-

butions.

&
i
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2. There are a number of between information theory and the theory of in-
vestment in a stock market. A stock market is by a random vector X whose
are nonnegative numbers equal to the of the price of a stock at the end of

a day to the price at the beginning of the day.
3. Entropy is the uncertainty of a single variable. We can define conditional
entropy H(X | Y), which is the entropy of a random variable conditional on the knowledge

of another random variable.

4, We now define the (information) of the channel as the maximum of the
information between the input and over all distributions on the input
that the power constraint,

5. We now introduce the concept of differential entropy, which is the entropy of a
random variable. Differential entropy is also related to the shortest description
and is similar in many ways to the entropy of a discrete random variable. But

there are some important differences, and there is need for some care in using the

6. The channel coding promises the existence of block codes that will allow
us to transmit information at rates below with an arbitrarily small of
error if the block length is large enough.

7. Although the theorem shows that there exist good with arbitrarily small
probability of error for long lengths, it does not provide a way of the
best codes.

8. Thereisa between the problems of data and data transmission.
During compression, we remove all the in the data to form the most compressed
version possible, whereas during data , we add redundancy in a controlled fashion

to combat errors in the channel.
Il. Translate the following paragraphs into Chinese.

1. At first sight, information theory and gambling seem to be unrelated. But as we
shall see, there is strong duality between the growth rate of investment in a horse race and
the entropy rate of the horse race. Indeed, the sum of the growth rate and the entropy rate
is a constant, In the process of proving this, we shall argue that the financial value of side
information is equal to the mutual information between the horse race and the side informa-
tion. The horse race is a special case of investment in the stock market. We also show how
to use a pair of identical gamblers to compress a sequence of random variables by an amount
equal to the growth rate of wealth on that sequence. Finally, we use these gambling tech-

niques to estimate the entropy rate of English.

=
—
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2. This enables us to divide the set of all sequences into two sets, the typical set,
where the sample entropy is close to the true entropy, and the nontypical set, which con-
tains the other sequences. Most of our attention will be on the typical sequences. Any
property that is proved for the typical sequences will then be true with high probability and

will determine the average behavior of a large sample.

Reading: Channel Capacity

What do we mean when we say that A communicates with B? We mean that the physi-
cal acts of A have induced a desired physical state in B. This transfer of information is a
physical process and therefore is subject to the uncontrollable ambient noise and imperfec-
tions of the physical signaling process itself. The communication is successful if the receiv-
er B and the transmitter A agree on what was sent.

We find the maximum number of distinguishable signals for n uses of a communication
channel. This number grows exponentially with n, and the exponent is known as the

.




1

EREBEEWRE

e R e o '“"‘“%‘,mwmw

channel capacity. The characterization of the channel capacity (the logarithm of the number
of distinguishable signals) as the maximum mutual information is the central and most fa-
mous success of information theory.

The mathematical analog of a physical signaling system is shown in Figure 1. 1. Source
symbols from some finite alphabet are mapped into some sequence of channel symbols,
which then produces the output sequence of the channel. The output sequence is random
but has a distribution that depends on the input sequence. From the output sequence, we
attempt to recover the transmitted message.

Each of the possible input sequences induces a probability distribution on the output
sequences. Since two different input sequences may give rise to the same output sequence,
the inputs are confusable. In the next few sections, we show that we can choose a “non-
confusable” subset of input sequences so that with high probability there is only one highly
likely input that could have caused the particular output, We can then reconstruct the input
sequences at the output with a negligible probability of error, By mapping the source into
the appropriate “widely spaced” input sequences to the channel, we can transmit a message
with very low probability of error and reconstruct the source message at the output. The

maximum rate at which this can be done is called the capacity of the channel.

W X" Channel ¥ W
——— Encoder Decoder  f——>
Message pOIX) Estlr?atc

)
Message

Figure 1.1 Communication System

Definition We define a discrete channel to be a system consisting of an input alphabet
X and output alphabet Y and a probability transition matrix p(y | x) that expresses the
probability of observing the output symbol y given that we send the symbol x. The channel
is said to be memoryless if the probability distribution of the output depends only on the in-
put at that time and is conditionally independent of previous channel inputs or outputs.

Definition We define the “information” channel capacity of a discrete memoryless
channel as where the maximum is taken over all possible input distributionsp(x).

C = maxI(X;Y) (1-D

pla)
We shall soon give an operational definition of channel capacity as the highest rate in

bits per channel use at which information can be sent with arbitrarily low probability of er-
ror. Shannon’s second theorem establishes that the information channel capacity is equal to
the operational channel capacity. Thus, we drop the word information in most discussions
of channel capacity.

There is a duality between the problems of data compression and data transmission.

During compression, we remove all the redundancy in the data to form the most com-
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pressed version possible, whereas during data transmission, we add redundancy in a con-
trolled fashion to combat errors in the channel. Later we show that a general communica-
tion system can be broken into two parts and that the problems of data compression and da-

ta transmission can be considered separately.
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Exercises

I . Answer the following questions.

1. What is the discrete channel?
2. How to calculate the channel capacity?
3. What is theredundancy?

I . Translate the following sentences into Chinese.

1. This transfer of information is a physical process and therefore is subject to the un-

controllable ambient noise and imperfections of the physical signaling process itself.

2. Source symbols from some finite alphabet are mapped into some sequence of chan-

nel symbols, which then produces the output sequence of the channel.

3. By mapping the source into the appropriate “widely spaced” input sequences to the
channel, we can transmit a message with very low probability of error and reconstruct the

source message at the output.




= ==

4. During compression, we remove all the redundancy in the data to form the most
compressed version possible, whereas during data transmission, we add redundancy in a

controlled fashion to combat errors in the channel.

Abstract Reading

On the Capacity of the Two-user Gaussian Causal Cognitive Interference Channel

This paper considers the two-user Gaussian causal cognitive interference channel (GC-
CIC), which consists of two source-destination pairs that share the same channel and
where one full-duplex cognitive source can causally learn the message of the primary source
through a noisy link. The GCCIC is an interference channel with unilateral source coopera-
tion that better models practical cognitive radio networks than the commonly used model
which assumes that one source has perfect noncausal knowledge of the other source’s mes-
sage. First, the sum-capacity of the symmetric GCCIC is determined to within a constant
gap. Then, the insights gained from the study of the symmetric GCCIC are extended to
more general cases. In particular, the whole capacity region of the Gaussian Z-channel,
i. e. , when there is no interference from the primary user, and of the Gaussian S-channel,
i. e. » when there is no interference from the secondary user, are both characterized to
within 2 bits. The fully connected general, i. e. , no-symmetric, GCCIC is also considered
and its capacity region is characterized to within 2 bits when, roughly speaking, the inter-
ference is not weak at both receivers. The parameter regimes where the GCCIC is equiva-
lent, in terms of generalized degrees-of-freedom, to the noncooperative interference chan-
nel (i. e. , unilateral causal cooperation is not useful), to the non-causal cognitive interfer-
ence channel (i. e. , causal cooperation attains the ultimate limit of cognitive radio technolo-
gy), and to bilateral source cooperation are identified. These comparisons shed light into
the parameter regimes and network topologies that in practice might provide an unbounded

throughput gain compared to currently available (non cognitive) technologies.

Channel Coding and Lossy Source Coding Using a Generator of Constrained

Random Numbers

Stochastic encoders for channel coding and lossy source coding are introduced with a




