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Preface

Quantum field theory is at the basis of a notable part of the theoretical developments
of twentieth century physics. The model that describes all fundamental interactions,
apart from gravitation, at the microscopic scale, is a quantum field theory. Perhaps
more surprisingly, quantum field theory has also led to a complete understanding
of the singular macroscopic properties of a wide class of phase transitions near the
transition point as well as statistical properties of some geometrical models.

However, unlike Newtonian or non-relativistic quantum mechanics, a quantum
field theory in its most direct formulation leads to severe conceptual difficulties due
to the appearance of infinities in the calculation of physical observables. Eventually,
the problem of infinities was solved empirically by a method called renormalization.
Only later did the method find a satisfactory interpretation, in the framework of
the renormalization group. The problem of infinities is related to an unexpected
phenomenon, the non-decoupling of very different length-scales in some physical
situations.

It is within the framework of statistical physics and continuous phase transitions
that the discussion of these conceptual problems is the simplest. This work thus
tries to provide an elementary introduction to the notions of continuum limit and
universality in physical systems with a large number of degrees of freedom. We will
emphasize the role of Gaussian distributions and their relations with the mean-field
approximation and Landau’s theory of critical phenomena. We will show that quasi-
Gaussian or mean-field approximations cannot describe correctly phase transitions
in two and three space dimensions. We will assign this difficulty to the coupling of
very different physical length-scales, even though the systems we will consider have
only local, that is, short-range interactions. To analyse the problem, a new concept
is required: the renormalization group, whose fixed points allow understanding the
universality of physical properties at large distance, beyond the quasi-Gaussian or
mean-field approximations.

Renormalization group arguments then lead to the idea that, in critical systems,
correlations at large distance near the transition temperature can be described by
local statistical field theories, formally quantum field theories in imaginary time,

This work corresponds to a course delivered, in various forms, for three years at
the University of Paris 7 and first published in French (1]. It is organized in the
following way.

Chapter 1 contains a short, semi-historical, introduction that tries to describe
the evolution of ideas from the first works in quantum field theory [2-5] to the
application of renormalization group methods to phase transitions.

In Chapter 2, we have collected a number of technical results concerning gen-
erating functions, Gaussian measures and the steepest descent method, which are
indispensable for the understanding of the work.

Chapter 3 introduces several basic topics of the work: the notions of continuum
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limit and universality, through the examples of the central limit theorem and the
random walk. We show that universality originates from the small probability of
large deviations from the expectation value in probability distributions, which trans-
lates into an hypothesis of locality in random walks. In both examples, universality
is related to the appearance of asymptotic Gaussian distributions. We then show
that, beyond a direct calculation, universality can also be understood as resulting
from the existence of fixed points of transformations acting on the space of probabil-
ity distributions. These very simple examples will allow us to introduce immediately
the renormalization group terminology. Finally, the existence of continuum limits
leads naturally to a description in terms of path integrals.

In Chapter 4, we begin the study of classical statistical systems, the central topic
of this work, with the example of one-dimensional models. This enables us to
introduce the terminology of statistical physics, like correlation functions, thermo-
dynamic limit, correlation length, and so on. Even if one-dimensional systems with
short-range interactions do not exhibit phase transitions, it is nevertheless possi-
ble to define a continuum limit near zero temperature. Moreover, in the case of
short-range interactions, these systems can be solved exactly by the transfer matrix
method, and thus provide interesting pedagogical examples.

The continuum limit of one-dimensional models again leads to path integrals. We
describe some of their properties in Chapter 5 (for a more systematic discussion see,
for example, Ref. [6]).

In Chapter 6, we define more general statistical systems, in an arbitrary num-
ber of space dimensions. For convenience, we use the ferromagnetic language, even
though, as a consequence of universality, the results that are derived in this work
apply to much more general statistical systems. In addition to complete and con-
nected correlation functions (whose decay properties at large distance, called cluster
properties, are recalled), which we have already defined in the preceding chapters,
we introduce vertex functions, which are related to the thermodynamic potential,
The free energy and thermodynamic potential, like connected correlation functions
and vertex functions, are related by a Legendre transformation of which we discuss
a few properties.

Chapter 7 is devoted to the concept of phase transition, a concept that is far
from being trivial in the sense that a phase transition requires the interaction of an
infinite number of degrees of freedom. We first solve exactly a particular model in
the limit in which the number of space dimensions becomes infinite. In this limit,
the model exhibits a behaviour that the analysis presented in the following chapters
will identify as quasi-Gaussian or mean-field like. Then, we discuss, in general
terms, the existence of phase transitions as a function of the space dimension. We
emphasize the difference between models with discrete and continuous symmetries
in dimension two.

In Chapter 8, we examine the universal properties of phase transitions in the
quasi-Gaussian or mean-field approximations. We study the singularities of ther-
modynamic functions at the transition point as well as the large-distance behaviour
of the two-point correlation function. We summarize the universal properties in the
form of Landau’s theory [7]. We stress the peculiarities of models with continuous
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symmetries at low temperature due to the appearance of Goldstone modes. Finally,
we evaluate corrections to the quasi-Gaussian approximation and show that the ap-
proximation is only consistent in space dimension larger than 4 (following the lines
of Ref. [8]). We mention the possible existence of tricritical points. :

In Chapter 9, we introduce the general concept of renormalization group (5] in
the spirit of the work [9]. We study the role of fixed points and their stability
properties. We exhibit a particular fixed point, the Gaussian fixed point, which
is stable in dimension larger than 4. We identify the leading perturbation to the
Gaussian fixed point in dimension < 4. We discuss the possible existence of a
non-Gaussian fixed point near dimension 4.

In Chapter 10, using the assumptions introduced in Chapter 9, we show that it
is indeed possible to find a non-Gaussian fixed point in dimension d = 4 — & [10],
both in models with reflection and rotation symmetries. We briefly introduce the
field theory methods [11, 12] that we will describe more thoroughly in the following
chapters. Finally, we present a selection of numerical results concerning critical
exponents and some universal amplitude ratios [13-17], obtained by field theory
methods using both the Callan-Symanzik formalism in three dimensions and the
e-expansion extrapolated to € = 1.

Chapter 11 contains a general discussion of renormalization group equations and
the properties of the corresponding fixed points, for a whole class of models that
possess more general symmetries than the reflection and rotation groups considered
so far, generalizing somewhat the results presented in [8, 18]. In particular, the
analysis leads to an interesting conjecture, relating decay of correlation functions
and stability of fixed points [8, 19].

With Chapter 12, we begin a more systematic presentation of field theory meth-
ods. Beyond a simple generalization of the perturbative methods already presented
in the preceding chapters, several new concepts are introduced like the loop expan-
sion, dimensional continuation and regularization [20].

With these technical tools, we can then Justify, in Chapter 13, asymptotic renor-
malization group equations obtained by varying the cut-off, as they appear in field
theory [4, 21]. General universality properties follow, as well as methods of calcu-
lating universal quantities as an expansion in powers of the deviation ¢ = 4 — ¢
from dimension 4. We conclude the chapter by a short presentation of the alterna-
tive formalism of renormalization group equations in renormalized form [22-25], in
particular Callan-Symanzik equations [22] directly relevant to the numerical results
reported in Chapter 10.

A class of field theories with an O(N) orthogonal symmetry can be solved in the
N — oo limit, as we show in Chapter 14. All universal properties derived within
the framework of the e-expansion can also be proved at fixed dimension, within the
framework of an expansion in powers of 1 /N [26-36].

In models with continuous symmetries, phase transitions are dominated, at low
temperature and large distance, by the interaction between Goldstone (massless)
modes. The interaction can be described by the non-linear o-model. Its study,
using the renormalization group, allows generalizing the scaling properties of the
critical theory at the transition to the whole low-temperature phase and studying
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properties of the phase transition near dimension 2 [37-40].

The renormalization group of quantum field theory has an interpretation as an
asymptotic renormalization group when the relevant fixed point is close to the
Gaussian fixed point. Quite early, more general formulations of the renormaliza-
tion group have been proposed, which do not rely on such an assumption [41-42].
They lead to functional renormalization group (FRG) equations that describe the
evolution of the effective interaction, but which are much more difficult to handle
than the equations arising in field theory. They have been used to prove renor-
malizability without relying on a direct analysis of Feynman diagrams, unlike more
traditional methods [43]. Moreover, more recently, they have inspired a number of
new approximation schemes, different from the perturbative scheme of field theory
[44]. Thus, for both pedagogical and practical reasons, we have decided to describe
then in this work.

Finally, in the appendix, we have collected various technical considerations useful
for a better understanding of the material presented in the work, and a few addi-
tional results concerning the FRG and functional flow equations based on partial
integration over low-momentum (IR) modes [45].
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1 Quantum field theory and the renormalization group

Without a minimal understanding of quantum or statistical field theories (formally
related by continuation to imaginary time), the theoretical basis of a notable part
of twentieth century physics remains incomprehensible.

Indeed, field theory, in its various incarnations, describes fundamental interac-
tions at the microscopic scale, singular properties of phase transitions (like liquid—
vapour, ferromagnetic, superfluid, separation of binary mixture,...) at the transition
point, properties of diluted quantum gases beyond the model of Bose-Einstein con-
densation, statistical properties of long polymeric chains (as well as self-avoiding
random walks), or percolation, and so on.

In fact, quantum field theory offers at present the most comprehensive framework
to discuss physical systems that are characterized by a large number of strongly
interacting local degrees of freedom.

However, at its birth, quantum field theory was confronted with a somewhat
unexpected problem, the problem of infinities. The calculation of most physical
processes led to infinite results. An empirical recipe, renormalization, was eventually
discovered that allowed extracting from divergent expressions finite predictions. The
procedure would hardly have been convincing if the predictions were not confirmed
with increasing precision by experiment. A new concept, the renormalization group
related in some way to the renormalization procedure, but whose meaning was only
fully appreciated in the more general framework of the theory of phase transitions,
has led, later, to a satisfactory interpretation of the origin and role of renormalizable
quantum field theories and of the renormalization process.

This first chapter tries to present a brief history of the origin and the development
of quantum field theory, and of the evolution of our interpretation of renormalization
and the renormalization group, which has led to our present understanding.

This history has two aspects, one directly related to the theory of fundamental
interactions that describes physics at the microscopic scale, and another one re-
lated to the theory of phase transitions in macroscopic physics and their universal
properties. That two so vastly different domains of physics have required the de-
velopment of the same theoretical framework, is extremely surprising. It is one of
the attractions of theoretical physics that such relations can sometimes be found.

A few useful dates:

1925 Heisenberg proposes a quantum mechanics, under the form of a mechanics
of matrices.

1926 Schrodinger publishes his famous equation that bases quantum mechanics
on the solution of a non-relativistic wave’equation. Since relativity theory was al-
ready well established when quantum mechanics was formulated, this may surprise.
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In fact, for accidental reasons, the spectrum of the hydrogen atom is better de-
scribed by a non-relativistic wave equation than by a relativistic equation without
spin,* the Klein—-Gordon equation (1926).

1928 Dirac introduces a relativistic wave equation that incorporates the spin 1/2
of the electron, which describes much better the spectrum of the hydrogen atom,
and opens the way for the construction of a relativistic quantum theory. In the
two following years, Heisenberg and Pauli lay out, in a series of articles, the general
principles of quantum field theory.

1934 First correct calculation in quantum electrodynamics (Weisskopf) and con-
firmation of the existence of divergences, called ultraviolet (UV) since they are due,
in this calculation, to the short-wavelength photons.

1937 Landau publishes his general theory of phase transitions.

1944 Exact solution of the two-dimensional Ising model by Onsager.

1947 Measurement of the so-called Lamb shift by Lamb and Retherford, which
agrees well with the prediction of quantum electrodynamics (QED) after cancella-
tion between infinities.

1947-1949 Construction of an empirical general method to eliminate divergences
called renormalization (Feynman, Schwinger, Tomonaga, Dyson, et al).

1954 Yang and Mills propose a non-Abelian generalization of Maxwell’s equations
based on non-Abelian gauge symmetries (associated to non-commutative groups).

1954-1956 Discovery of a formal property of quantum field theory character-
ized by the existence of a renormalization group whose deep meaning is not fully
appreciated (Peterman—Stiickelberg, Gell-Mann-Low, Bogoliubov—Shirkov).

1967—1975 The Standard Model, a renormalizable quantum field theory based on
the notions of non-Abelian gauge symmetry and spontaneous symmetry breaking,
is proposed, which provides a complete description of all fundamental interactions,
but gravitation.

1971-1972 After the initial work of Kadanoff (1966), Wilson, Wegner, et al,
develop a more general concept of renormalization group, which includes the field
theory renormalization group as a limit, and which explains universality properties
of continuous phase transitions (liquid-vapour, superfluidity, ferromagnetism) and
later of geometrical models like self-avoiding random walks or percolation.

1972-1975 Several groups, in particular Brézin, Le Guillou and Zinn-Justin,
develop powerful quantum field theory techniques that allow a proof of universality
properties of critical phenomena and calculating universal quantities.

1973 Using renormalization group arguments, Politzer and Gross—Wilczek es-
tablish the property of asymptotic freedom of a class of non-Abelian gauge theories,
which allows explaining the free-particle behaviour of quarks within nucleons.

1975-1976 Additional information about universal properties of phase transi-
tions are derived from the study of the non-linear & model and the corresponding
d — 2 expansion (Polyakov, Brézin—Zinn-Justin).

* intrinsic angular momentum of particles, that takes half-integer (fermions) or

integer (bosons) values in units of A.



