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PREFACE

In presenting this volume of essays in Statistics and Probability we wish to honor
a distinguished scientist and oue of the most eminent statisticians of our time.

The impact of C. R. Rao’s work in the development of the modern theory of
Statistics is so well recognized that it does not require comment in this Preface.
However, scholars outside India might not be fully aware of the important role he
has played in developing Statistics in India and more particularly, in the growth of
the Indian Statistical Institute, and in promoting statistical education and training in
South East Asian countries. After an initial period of study at Calcutta University in
1943 during which he received a Master’s degree, Rao joined the Indian Statistical
Institute which had been founded a decade or so earlier by P. C. Mahalanobis. The
Institute had already made its mark in Statistical research, especially in such areas as
Multivariate Analysis and the Design of Experiments. In the years that followed the
Institute has produced, under Rao’s direction, an entire generation of students and
younger colleagues, many of whom have become eminent Statisticians and Prob-
abilists in their own right.

C. R. Rao’s career has not been confined to the field of Statistics in the narrow
sense. After the Indian Statistical Institute assumed the functions of a University in
the late fifties, its academic activities expanded enormously and many of the
country’s talented young scientists, economists, geologists, anthropologists, geneti-
cists, and mathematicians were attracted to the Institute by Professor Rao’s wide
range of scientific interests. These interests are, to a large extent, represented by the
essays in the volume, ranging from topics in Pure Mathematics, Probability Theory
and Statistical Inference to those with a distinctly applied flavor. Even so, for
reasons of space, it has not been possible to include several of the important areas of
applications to which Rao himself has made significant contributions. Thus we
regret that the volume contains no articles on Anthropology, Econometrics and
Psychometrics (to name a few of these areas).

C. R. Rao was born on September 10, 1920 in Hadagali, Karnataka State, India.
He has been up to now author or co-author of nine books and over 200 research
publications, a list of which is given at the end of this volume. This volume is
dedicated to C. R. Rao with admiration and affeftion on the occasion of his sixtieth
birthday in appreciation of his many pioneering contributions to the field of
statistics, which have found place in standard books on statistics.

We wish to express our appreciation to S. K. Mitra, K. R. Parthasarathy, B:
Ramachandran and B. V. Rao, our colleagues on the Editorial Committee, for
spending considerable amount of time and effort in preparation of this volume. We
are grateful to R. F. Anderson, G. J. Babu, A. K. Basu, D. Basu, Sanjoy Bose, P.
Bhimasankaram, Ratan DasGupta, S. DasGupta, R. H. Farrell, A. Hedayat, Subir

Vil
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Ghosh, P. Jaganathan, V. M. Joshi, J. Juretkova, S. Kotz, D. Majumdar, K. V.
Mardia, M. G. Nadkarni, J. N. K. Rao, M. M. Rao, Y. R. Sarma, D. N. Shanbhag,
Bikas K. Sinha, Bimal K. Sinha, A. C. Tamhane and S. J. Wolfe for reviewing the
papers in this volume. Thanks are also due to the North-Holland Publishing
Company for their excellent cooperation.

G. Kallianpur
P. R. Krishnaiah
J. K. Ghosh
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COCHRAN’S THEOREM, RANK ADDITIVITY
AND TRIPOTENT MATRICES

T.W. ANDERSON
Stanford Unizcersity, Stanford, CA, U.S.A.

George P. H. STYAN
McGill University, Montreal, Que., Canada

LetA4,,.... A, be symmetric matrices and A =24,. A matrix version of Cochran’s theorem is that
(@) A} =4, i=1,....k. and (b) A;4,=0 Vi+ j, are necessary and sufficient conditions for (d)
Zrank(A4,)=rank(4) whenever (¢) 4 =1. This paper reviews extensions of the theorem and its
statistical interpretations in the literature, presents various proofs of the above theorem, and obtains
some generalizations. In particular. (¢) abeve is replaced by A° = 4 and the condition of symmetry
is deleted. The relations with (e) rank(4?)=rank(4,), i=1,..., k, are explored. Another theorem
covers the case of matrices not necessarily square. 4 is “tripotent” if 4>=A. Then 4} =4,,
i=1,..., k, and (b) are necessary and sufficient conditions for 4°=A, (d), and one further
condition such as 4,A=A7, i=1,...,k. Variations and statistical applications are treated. Tri-
potent is replaced by r-potent (4" = 4) for r >3.

1. Introduction

Let x be a pX1 random vector distributed according to a multivariate normal
distribution with mean vector 0 and covariance matrix I,. We will denote this by
x~N(0.1)). Let q,,..., g, be quadratic forms in x with ranks ry,..., r,, respectively,
and suppose that ¥g,=x'x. Then what has become well-known as Cochran’s
theorem is Theorem 11 of Cochran (1934, p. 179): A necessary and sufficient condition
that q,,. ... q, be independently distributed as x* is that 3r,=p.

Rao (1973, Section 3b.4) gives this result with x~N(p, I') as’the Fisher—Cochran
theorem. Fisher (1925) showed that if the quadratic form ¢ in x is distributed as x2,
then x'x—q is distributed as x}_, independently of g, cf. James (1952).

Our purpese in this paper is partly expository; we review various extensions of
Cochran’s theorem in a bibliographic and historical perspective, with special empha-
sis on matrix-theoretic analogues. While we present.over 30 references, we note that
Scarowsky (1973) has a rather complete discussion and bibliography on the distribu-
tion of quadratic forms in normal random variables. See also the bibliography by
Anderson et al. (1972), where 90 research papers published through 1966 are listed
under subject-matter code 2.5 (distribution of quadratic and bilinear forms in
normal variables).

Our first section is devoted to a survey of results summarized in Theorems 1.1 and
1.2. The proofs are given in Section 2. In the following section the extensions from
idempotent to tripotent matrices are given and proved. All matrices considered in
this paper will be real.
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To formulate our first matrix-theoretic extension of Cochran’s theorem we let

A,.. .. A, be pXp symmetric matrices and write 4 =24, Consider the following
statements;
(a) A=A, i=1.... k,
(b) A,AJZO for all i #7,
(<) A=1.
(d) > rank(4,)=rank(A4).
Thien the matrix-theoretic analogue of Cochran’s theorem is:
(a).(b).(c)=(d), (1.1)
(c).(d)>(a). (b). (1.2)

The reason that these two versions of Cochran’s theorem ars cquivalent follows from
the following two well-known results;

Lemma 1.1. Let x~N(p, Z), with Z positive definite, and let A be non-random and
symmetric. Then x’Ax~x}(82), a non-central x* distribution with f degrees of freedom
and non-centrality parameter 82, if and only if AL A=A, and then f=tr AS =rank(A4)
and 82 =p'Ap.

We write trd for the trace of 4 and note that when 4 =A4? then tr4 =rank(A4);
this result holds even when A is not symmetric [cf., e.g. Rao (1973, p. 28)].

When =1, the condition in Lemma 1.1 reduces to: 4% =A, and this was first
given by Craig (1943) with p=0 and then by Carpenter (1950) with g possibly
non-zero. [Thus (a) is equivalent to ¢, =x’'A4,x having a x?-distribution with number
of degrees of freedom equal to rank(4,).] Sakamoto (1944, Th. II, p. 5) gave the
more general version with X positive definite and p=90. Cochran (1934, Corollary 1,
p. 179) took x~N(0, I') and gave Lemma 1.1 with the condition that all the non-zero
eigenvalues of 4 be equal to 1 instead of the condition A2 =4,

Lemma 1.2. Let x and A be defined as in Lemma 1.1 and let B be non-random and
symmetric. Then x'Ax and x’'Bx are independently distributed if and only if AZB=0.

When X =1 the condition in Lemma 1.2 reduces to A B=0, and this was first given
by Craig (1943) with p=0 and then by Carpenter (1950) with p possibly non-zero.
Agair Sakamoto (1944, Th. I, p. 5) gave the more general version with X positive
definite and w=0. Their proofs, however, turned out to be incorrect and the first
correct proof of Lemma 1.2 (with p=0) seems to be by Ogawa (1948; 1949, cf. p.
85). Cochran (1934, Theorem III, p. 181) let x~N(0, I') and gave the condition in
Lemma 1.2 as

{—isA|-|I—iB)=|I—isA —i:B| (1.3)

for all real s and ¢, where i=y—1 and |-| denotes determinant. Ogasawara and
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Takahashi (1951, Lemma 1) gave a short proof that (1.3) implies AB=0 when the
symmetric matrices 4 and B are not necessarily positive semi-definite.

Cochran’s theorem was first extended to x~N(p, I,) by Madow (1940) and then
to x~N(0, X), X positive definite, by Ogawa (1946, 1947), who also relaxed the
condition (c) to A?=A. Ogasawara and Takahashi (1951) extended Cochran’s
theorem to x~N(p, Z), T positive definite, and to x~N(0, Z), with X possibly
singular. Extensions to x~N(p, ), with X possibly singular, have been given by
Styan (1970, Theorem 6) and Tan (1977, Theorem 4.2); Ogasawara and Takahashi
(1951) extended Lemmas 1.1 and 1.2 to x~N(p, X), with Z possibly singular.

James (1952) appears to be the first to notice that (1.1) could be extended to

(a),(c)—(b).(d),
(b),(c) »(a),(d),
while
(a),(b) > 42 =4 and (d)
follows at once from the definition of the x2-distribution.

Chipman and Rao (1964) and Khatri (1968) extended the matrix analogue of
Cochran’s theorem to square matrices which are not necessarily symmetric:

Theorem 1.1. Let A,,..., A, be square matrices, not necessarily symmetric, and let
A=ZA,. Consider the following statements:

(a) A}=A,, i=1,..,k,

(b) A4,4,=0 foralli#],

(c) A =4,

(d) > rank( 4,)=rank(4),

(e) rank( A?)=rank(4,), i=1,...,k.

Then
(a),(b) —(c).(d). (e). (1.4)
(a),(c)—>(b).(d), (). (1.5)

(b).(c).(e)—>(a),(d), (1.6)

(c),(d) —(a), (b),(e). (1.7)

As Rao and Mitra (1971, p. 112) point out, the extra condition {e) in (1 %) is
required (to cover possible asymmetry); for if k=2 and

0 1 0 -1
A‘:(o 0)’ Ai‘:(o 0)’
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then (b), {c) hold, but (a) and (d) do not. Banerjee and Nagase (1976) replace the
extra condition (¢) in (1.6) by
(f) rank(d,)=1wrd4,, i=1,... k,
and prove that
(b).(c).(f) —>(a).(d); (1.8)

however. the condition (b) is now no longer required on the left of (1.8) since

(¢).(f) —(a),(b),(d)
follows from

rank(A)=trd=tr 5 4, = D trd,= D rank(4,)

and (1.7).

In Section 2 we present several proofs of Theorem 1.1.

Marsaglia and Styan (1974) extended Theorem 1.1 by considering an arbitrary
sum of matrices, which may now be rectangular. The analogue of Theorem 1.1 is

Theorem 1.2. Let A,..., A, be pXgq matrices, and let A=ZA, Consider the
following statements:

(a') A A A=4, i=1.. k.

(b’) AA"A,=0 forallisj,

(¢') rank(4,4°A4,)=rank(A4,), i=1....,k.

(d) > rank(A,)=rank(4),

where A~ is some g-inverse of A. Thon
(a) —(b),(c),(d"), (1.9)

(b).(c) >(a’).(d). (1.10)

(d') —(a),(b).(c"). (1.11)

If (&) or if (b') and (¢') hold for some g-inverse 4 ", then (a’), (b’) and (") hold for
every g-inverse A~ .

In Theorem 1.2 we define a g-inverse of 4 as any solution 4~ to 44 A=A, cf.
Rao (1962), Rao and Mitra (1971).

The condition (¢) in Theorem 1.2 plays the role of condition (e) in Theorem 1.1,

Marsaglia and Styan (1974, Th. 13) proved (1.11), while Hartwig (1981) has
established (1.9). The proposition (1.10), however, appears to be new and is proved
in Section 2, where we also present several different proofs of (1.7). In Sectien 3 we
extend Theorem 1.1 to tripotent matrices, following the work by Luther (1965), Tan
(1975, 1976) and Khatri (1977). In Section 4 we discuss the applications of these
algebraic theorems to statistics.
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2. Some proofs
2.1, Proofs of Theorem 1.1

To prove (1.7) in Theorem 1.1 we begin by reducing condition {(c) to a sum being I,
as in the earlier version of Cochran’s theorem; then (1.7) reduces to (1.2). We may
do this since if 4 is p X p, not necessarily symmetric, then, as we shall show,

A*=A orank(J—A4)=p—rank(4). (2.1

(Note Fisher’s 1925 result goes both ways, cf. Section i, paragraph 2.) To prove (2.1)
let AZ=A; then (J— 4> =I—~A and so

rank(I—A4)=tr(I—A4)=p—trA=p—rank(4).
To go the other way we follow Krafft (1978, pp. 407-408) by noting that
N(A4)CC(I—A), (2.2)

where N(A4)={x: Ax=0} is the null space of A and C(I—A)={(I—A4)x} is the
column space of I—A. {If xEN(A), then Ax=0 and (J—A)x=xEC(1—A4)] If
rank(I—A)=p—rank(A), then equality must hold in (2.2) and so 4° =4.

We are grateful to a reviewer for suggesting an alternative proof of (2.1). Consider
the equations
1 A): 1 J')(I—-A 0)*’1 0)
(A A (0 1 0 A ( 1 I )
:( I 0 )( I ] )( 1 4 )
A I\ 4—42)N0 1)

rank( 4 —A4%)+p=rank({—A4)+rank(4) (2.2a)

Then

from which (2.1) follows at once. .
The equation (2.2a) represents “rank additivity on the Schur complement”, cf,
Marsaglia and Styan (1974, p. 291). Let
_(E F )
M=(G i
and suppose that

rank(E, F)= rank( g ) =rank(E),
rank(G, H)::rank( II; ) =rank(H ).

Then

(M/E)=H-GE"F
is the Schur complement of E in M and this is invariant over choices of E ™.
Similarly ‘

(M/H)=E—-FH G
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is the Schur complement of H in M and this is invariant over choices of H . 1t
follows that

rank( M ) =rank(M /E )+ rank( E)

=rank(M/H )+rank( H ). (2.2b)
Setting
_{I A
M= ( 4 4 )

yields (2.2a) directly.

We now write A, =I—A, and in view of (2.1) we replace (c) by £¥_,4, =1, and
(d) by B*_srank(4,)=p.

The proof of (1.7) by Cochran (1934, p. 180), cf. also Anderson (1958, p. 164) and
Rao (1973, Section 3b.4), requires that 4,,..., 4, be symmetric. In this event we may
write ‘

A,=PP —-0,0,, i=0,1,...,k, (2.3)

where P, is pXp,, Q,is pXgq;, and A4, has p, positive and g, negative eigenvalues, cf.,
e.g. Anderson (1958, p. 346). In (2.3) we assume that P, has rank p,, Q, has rank ¢,
and p, +¢,=r, the rank of 4,. Hence

k k k
I,=34,=Z PP~ 300
j ; i=0

i=0 i=0
s
L., 0 \lp
:(PO’- -,Pk’QO""’Qk)(op ! —1 ) l(:)
q
Qi
=pIpP’, (2.4) -

say, where =3k .q;, since from (d) now p=3k ,r, =3k ((p, +¢,)=(Ekp) +q.
But (2.4) is positive definite and P is non-singular; hence ¢=0 and J=1I,. Thus
4o = - -=¢, =0 and (2.4) reduces to

£

L=(P,..P)| : |=PP,

Py
and so P=(P,,..., P,) is an orthogonal matrix. Hence A2=P P'PP/ =P P’ =4,
since F/F,=1I,, and A, A; =P, P/P,F =0 for all i5~/ since then PP, =0.

We now present four other proofs of (1.7); these four proofs do not require that
. Ay,..., A, be symmetric.
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Following Craig (1938, p. 49), cf. also Aitken (1950, Section 6) and Rao and Mitra
(1971, pp. 111-112), we may prove (1.7) using a rank-subadditivity argument. From
(2.1) with A, replacing 4 we have

p—rank(A,)<rank(Z, —4,)
=rank(Ad,+ - -+4,_,)
<rank(Ay)+ ---+rank(4,_,)
=p~—rank(A4,) (2.5)

when (d) holds. This inequality string, therefore, collapses, and rank(I, —A4,)=p—
rank(A4,), which implies 47 =4, by (2.1); repeating the argument with
A, A, _,,... yields (a). To see that this implies (b) we follow Rao and M‘itra
(1971, p. 112) by noting that the argument used in (2.5) implies that
Z__

(4,+4,)'=A4,+4,;

and so
AA;+4,4,=0.

Premultiplying by A, yields

AA,+A4,4,4,=0, (2.6)

while postmultiplying (2.6) by 4, yields
24,4,4,=0=A,A,A,.
Substituting into (2.6) yields (b).

Our next proof of (1.7) follows Chipman and Rao (1964, p. 4), cf. also Styan
(1970, p. §71). We write

4,=B(],
where B, and C, are pXr, of rank r,. Then
1,=34,= 3B
G
=(B,,..., B)
i
=BC’,
say. By (d) B and C are both non-singular and so C'=B "' and
[ C,B,,...,C,B,
C'B=1=| : Co

' C.B,....,C/B,
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which implies that

A?=BCBC =BC =4,
A4,4,=BC/BC/ =0 foralliz).

Hence (1.7) 1s established.
Our fourth proof of (1.7) follows Loynes (1966), cf. also Searle (1971, p. 63). A

rank-subadditivity argument is used similar to that used in (2.5):
p ~rank( A, )<rank(I,—A4;)
<rank(Aq. A4,,.... 4, . 1,~A4,)
=rank(A,,..., 4, I—A,~ - —A,_|—4,;)

=rank(A,,..., 4, )
<rank(A,)+ - - - +rank(4,_,)

=p-rank(4,).
Our fifth and final proof of (1.7) follows a suggestion made by a reviewer. Let the

pk X p matrix

K=(I1,1.....IY
and let
/A‘
D=
A,
Then
o
A= 3 A4,=K'DK
i=1
and
(2.6a)

(¢) > K'DK=K'DKK'DK,

(d) <> rank( D) =rank(K'DK)
=rank{ K'D)=rank{ DK)

using Sylvester’s Law of Nullity. Applying the rank cancellation rules Lemmas 2.1

and 2.2 below to (2.6a) vields

D=DKK'D

or
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which is (a) and (b). See also Marsaglia and Styan (1974, p. 285) and Srivastava and
‘Khatri (1979, p. 14).
The rest of Theorem 1.1 is easily proved. To prove (1.4) we see that (a), (b)—

4=(Za)=34+3 4,4=34,=4,
i
whife
Srank(A4,)=Jr A, =tr X A, =tr A =rank(4), (2.7)

and so (1.4) is established.
To prove (1.5) we see that (a), (¢)—>(d) from (2.7) and so (1.5) follows from (1.7).
To prove (1.6) we see that (b), (¢)—

A=(T4)=3a+ T 4,4,=342=34,=4;
i

multiplying through by A4, yields
A =4 (2.8)

using (b). To see that (2.8) — (a) we use the rank cancellation rule Lemma 2.1 below,
cf. (2.13) in Marsaglia and Styan (1974, p. 271); this rule will also be uscful later on.

Lemma 2.1 (Right-hand rank cancellation rule). If
LAX=MAX and rank( AX )=rank(A4) (2.9)

for some conformable matrices A, L, M and X, then
LA=MA. (2.10)

Thus (2.8) —(a) by replacing L. A and X in (2.9) by 4, and M by I. Then (2.9)
becomes (2.8) and (e), while (2.10) becomes (a). [We note that the two matrices 4,
and A, displayed right after Theorem 1.1 satisfv (2.8) but not (e).] Then (d) follows
from (1.4) or (1.5).

Proof of Lemma 2.1. Let A =B, where B and € have r columns and r=rank(A)
=rank(B)=rank(C). Then rank(4X)=rank(BC'X)=rank(C’'X)=rank(4), and
so C’X has full row rank. Thus LAX=MAX equals LBC’X=MBC'X—-LB=MB
— LBC'=MBC’, which 15 (2.10).

Transposing the matrices in Lemma 2.1 yields:

Lemma 2.2 (Left-hand rank cancellation rule). If
1AX=LAY and rank(LA)=rank(A)

for some conformable matrices A, L, X and Y, then
AX=AY.



