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PREFACE

Since its inception, the term “photonics’ has been applied to increasingly wide realms
of application, with connotations that distinguish it from the broader-brush terms
“optics” or “the science of light.” The briefest glance at the topics covered in these
volumes shows that such applications now extend well beyond an obvious usage of
the term to signify phenomena or mechanistic descriptions involving photons. Those
who first coined the word partly intended it to convey an aspiration that new areas of
science and technology, based on microscale optical elements, would one day develop
into a comprehensive range of commercial applications as familiar and distinctive
as electronics. The fulfilment of that hope is amply showcased in the four present
volumes, whose purpose is to capture the range and extent of photonics science and
technology.

It is interesting to reflect that in the early 1960s, the very first lasers were usually
bench-top devices whose only function was to emit light. In the period of growth
that followed, most technical effort was initially devoted to increasing laser stability
and output levels, often with scant regard for possibilities that might be presented by
truly photon-based processes at lower intensities. The first nonlinear optical processes
were observed within a couple of years of the first laser development, while quantum
optics at first grew slowly in the background, then began to flourish more spectacularly
several years later. A case can be made that the term “photonics” itself first came
into real prominence in 1982, when the trade publication that had previously been
entitled Optical Spectra changed its name to Photonics Spectra. At that time the
term still had an exotic and somewhat contrived ring to it, but it acquired a new
respectability and wider acceptance with the publication of Bahaa Saleh and Malvin
Teich’s definitive treatise, Fundamentals of Photonics, in 1991. With the passage
of time, the increasing pace of development has been characterized by the striking
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xii PREFACE

progress in miniaturization and integration of optical components, paving the way for
fulfilment of the early promise. As the laser industry has evolved, parallel growth in
the optical fiber industry has helped spur the continued push toward the long-sought
goal of total integration in optical devices.

Throughout the commissioning, compiling, and editing that have led to the publi-
cation of these new volumes, it has been my delight and privilege to work with many
of the world’s top scientists. The quality of the product attests to their commitment
and willingness to devote precious time to writing chapters that glow with authori-
tative expertise. I also owe personal thanks to the ever-professional and dependable
staff of Wiley, without whose support this project would never have come to fruition.
It seems fitting that the culmination of all this work is a sequence of books published
at the very dawning of the UNESCO International Year of Light. Photonics is shap-
ing the world in which we live, more day by day, and is now ready to take its place
alongside electronics, reshaping modern society as never before.

DAviID L. ANDREWS

Norwich, U.K., July 2014
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SILICON PHOTONICS

WiM BOGAERTS

Ghent University, imec, Department of Information Technology, Gent, Belgium

1.1 INTRODUCTION

Since the beginning of the century, silicon photonics has grown from a niche research
field to a field with strong industrial interest and several near-future applications
[1,2]. This rapid growth can be attributed to several unique characteristics of silicon
photonics. First of all, the use of silicon makes it possible to make photonic integrated
circuits (PICs) with much smaller building blocks than in other material systems [3].
This enables smaller chips, but also more complex photonic circuits. Also, silicon
is the base material for electronic circuits, and huge investments in manufacturing
technology can be put to work to make photonic circuits. This offers a route to high
volume, low cost photonic circuits that could be applied in many applications in
sensing [4, 5] and optical communication [6, 7].

In this chapter, we will discuss current state of the art in silicon photonics. We will
look a bit closer in the applications, and from that we derive the functions needed on
the chip. Finally, we discuss the technology implementations.

1.2 APPLICATIONS

1.2.1 Interconnects

Integrated photonics has been mainly used for applications in optical communication,
especially in telecom backbone and metro networks. The advent of silicon photonics

Photonics: Scientific Foundations, Technology and Applications, Volume I1, First Edition.
Edited by David L. Andrews.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



2 SILICON PHOTONICS

Electrical signals Electrical signals

A

Photo
diodes

Transmitter Receiver

Demultiplexer

1
1
Laser : Modulators Multiplexer
diodes

FIGURE 1.1 A WDM optical interconnection.

and its potential for low cost and low power transceiver chips has opened up new,
shorter-range interconnect applications in high-performance computing and datacen-
ters [8,9]. Silicon photonic chips might turn out to be a game-changer in interconnects
on an even smaller scale: it is the first technology that can offer an attractive solution
to solve the off-chip bandwidth bottleneck [10].

Typical optical links involve light sources, signal modulators, a waveguide
medium, and a photodetector. These individual functions are described in Section 1.3.
In the case of wavelength-division multiplexing (WDM), signals are encoded onto
different carrier wavelengths, which are multiplexed into the same waveguide. This
technique, illustrated in Figure 1.1, is widely used to increase the bandwidth of optical
links. As we will see in Section 1.3.2, silicon photonics can implement WDM filters
with a very small footprint.

1.2.2 Sensors and Spectroscopy

Another application field where silicon photonics can enable unique capabilities
is that of sensing. As we will see later in this chapter, silicon waveguides can be
extremely sensitive to different effects, such as temperature, cladding index [11],
strain [12] and deposition of layers [13]. Especially the latter is important, as proper
surface chemistry enables selective response to specific effects or molecules, enabling
biosensors [5] or specific gas sensors [14]. In addition to high sensitivity, the tech-
nology offers integration of many sensor functions on a single chip, potentially with
the inclusion of the read-out circuitry. Some examples of photonic sensors that could
be integrated on a silicon chip are shown in Figure 1.2: A ring resonator could be
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FIGURE 1.2 Two examples of silicon-photonics-based sensor systems. (a) A ring-resonator-
based biosensor [4] and (b) an on-chip spectrometer [15].

used to capture selective molecular binding events and thus measure concentrations
of specific (bio)molecules in a medium. Or, wavelength filters of multiplexers could
be used to make a spectrometer that could be used for a variety of spectroscopic
measurement systems [15].

1.3 OPTICAL FUNCTIONS

A PIC can accommodate many different optical functions. The most common func-
tions have to do with transport of light, wavelength filtering and coupling to off-chip
elements and fibers. These are called passive functions, as light is typically not altered
in the process. Active functions involve electro-optic elements such as light sources,
signal modulators, and photodetectors. We will discuss these functions and the state
of the art in terms of performance that has been demonstrated in silicon photonics.
The actual technology is discussed in Section 1.4

1.3.1 Waveguides and Routing

The key optical function on a PIC is guiding light between parts on a chip. An optical
waveguide consists of a high-index core surrounded by a lower-index cladding. The
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FIGURE 1.3 Silicon waveguides: (a) small-core photonic wires [17], (b) large-core rib
waveguides [20], and (c) oxidized waveguide [23].

higher the index contrast, the more compact you can make the waveguide core. As
it is, silicon has a very high refractive index in the regime where it is transparent
(wavelength > 1.2 pm). This way, it is possible to make high contrast waveguides
with core dimensions down to 200-500 nm, using a cladding oxide (n = 1.45) or air
(n = 1.0) [3, 16]. Such waveguides, often called photonic wires, can have bend radii
of only a few micrometers with low loss [17].

Apart from photonic wires, it is also possible to use silicon for large-core waveg-
uides. Such waveguides are defined in silicon of several micrometers thick [18-20],
and to obtain single-mode condition, they are only partially etched. Such waveguide
is shown, together with a photonic wire waveguide, in Figure 1.3. Because the index
contrast between the unetched core and the etched cladding is relatively low, such
waveguides still require a large bend radius.

The key performance metic for optical waveguides is the propagation loss. Typical
photonic wires have a loss of 1-2 dB/cm [16, 17, 21]. Large-core waveguides have
a lower loss, on the order of 0.1 dB/cm [20]. To obtain lower loss in the small-code
waveguide system, one can also use a shallow-etched rib waveguide geometry, which
can reduce the losses with a factor of 3—4, but again with a penalty of larger bend
radius [22].

Because waveguide losses are largely caused by scattering at etched sidewalls,
alternative definition techniques can reduce the losses. For instance, waveguides can
be defined by oxidation, which provides a smooth sidewall surface [23].

The high contrast and submicron dimensions of silicon photonic wire waveguides
give them a rather strong dispersion. While the effective index of a 450 nm x 220
nm wire is around 2.4 (at 1550 nm wavelength), its group index is around 4.3. The
tight confinement also makes these waveguides very susceptible to small variations,
both in geometry and material parameters. A very small deviation of the width or
height will have a significant effect on the effective index, to the extent that for some
functions, nanometer-scale precision is required. Large-core waveguides, on the other
hand, are much less sensitive to geometrical variations.



