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PREFACE TO THE FIFTH EDITION

TuE main changes in this edition are in the Notes at the end of each
chapter. T have sought to provide up-to-date references for the reader
who wishes to pursue a particular topic further and to present, both
in the Notes and in the text, a reasonably accurate account of the
present state of knowledge. For this I have been dependent on the
relevant sections of those invaluable publications, the Zentralblatt and
the Mathematical Reviews. But I was also greatly helped by several
correspondents who suggested amendments or answered queries. I
am especially grateful to Professors J. W. S. Cassels and H. Halber-
stam, each of whom supplied me at my request with a long and most
valuable list of suggestions and references.

There is a new, more transparent proof of Theorem 445 and an
account of my changed opinion about Theodorus’ method in irrationals.
To facilitate the use of this edition for reference purposes, I have, so
far as possible, kept the page numbers unchanged. For this reason, I
have added a short appendix on recent progress in some aspects of the
theory of prime numbers, rather than insert the material in the appro-
priate places in the text. :
E M W.
ABERDEEN
October 1978



PREFACE TO THE FIRST EDITION

Tais book has developed gradually from lectures delivered in a number
of universities during the last ten years, and, like many books which
have grown out of lectures, it has no very definite plan.

It is not in any sense (as an expert can see by reading the table of
contents) a systematic treatise on the theory of numbers. It does not
even contain a fully reasoned account of any one side of that many-
sided theory, but is an introduction, or a series of introductions, to
almost all of these sides in turn. We say something about each of a
number of subjects which are not usually combined in a single volume,
and about some which are not always regarded as forming part of the
theory of numbers at all. Thus Chs. XII-XV belong to the ‘algebraic’
theory of numbers, Chs. XIX-XXI to the ‘additive’, and Ch. XXII
to the ‘analytic’ theories; while Chs. I1I, XI, XXIII, and XXIV deal
with matters usually classified under the headings of ‘geometry of
numbers’ or ‘Diophantine approximation’. There is plenty of variety
in our programme, but very little depth; it is impossible, in 400 pages,
to treat any of these many topics at all profoundly.

There are large gaps in the book which will be noticed at once by any
expert. The most conspicuous is the omission of any account of the
theory of quadratic forms. This theory has been developed more
systematically than any other part of the theory of numbers, and there
are good discussions of it in easily accessible books. We had to omit
something, and this seemed to us the part of the theory where we had
the least to add to existing accounts.

We have often allowed our personal interests to decide our pro-
gramme, and have selected subjects less because of their importance
(though most of them are important enough) than because we found
them congenial and because other writers have left us something to
say. Our first aim has been to write an interesting book, and one unlike
other books. We may have succeeded at the price of too much eccen-
tricity, or we may have failed; but we can hardly have failed com-
pletely, the subject-matter being so attractive that only extravagant
incompetence could make it dull.

The book is written for mathematicians, but it does not demand any
great mathematical knowledge or technique. In the first eighteen
chapters we assume nothing that is not commonly taught in schools,
and any intelligent university student should find them comparatively
easy reading. The last six are more difficult, and in them we presuppose
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a little more, but nothing beyond the content of the simpler university
courses.

The title is the same as that of a very well-known book by Professor
L. E. Dickson (with which ours has little in common). We proposed
at one time to change it to An introduction to arithmetic, a more novel
and in some ways a more appropriate title; but it was pointed out that
this might lead to misunderstandings about the content of the book.

A number of friends have helped us in the preparation of the book.
Dr. H. Heilbronn has read all of it both in manuscript and in print,
and his criticisms and suggestions have led to many very substantial
improvements, the most important of which are acknowledged in the
text. Dr. H. S. A. Potter and Dr. S. Wylie have read the proofs and
helped us to remove many errors and obscurities. They have also
checked most of the references to the literature in the notes at the ends
of the chapters. Dr. H. Davenport and Dr. R. Rado have also read
parts of the book, and in particular the last chapter, which, after their
suggestions and Dr. Heilbronn’s, bears very little resemblance to the
original draft.

We have borrowed freely from the other books which are catalogued
on pp. 417-19, and especially from those of Landau and Perron. To
Landau in particular we, in common with all serious students of the
theory of numbers, owe a debt which we could hardly overstate.

G. H. H.
OXFORD E. M. W.
August 1938



REMARKS ON NOTATION

We borrow four symbols from formal logic, viz.

—, =, 3, e

— is to be read as ‘implies’. Thus
llm—l|n (p- 2)
means ‘ ‘‘l is a divisor of m’’ implies ‘‘/ is a divisor of »’’’, or, what is
the same thing, ‘if I divides m then ! divides »’; and

bla.c|b>c|a (p- 1)
means ‘if b divides a and ¢ divides b then ¢ divides a’.

= is to be read ‘is equivalent to’. Thus
m | ka—ka' =m, |a—a’ (p- 51)
means that the assertions ‘m divides ka—ka’’ and ‘m, divides a—a'’
are equivalent; either implies the other.

These two symbols must be distinguished carefully from — (tends to)
and = (is congruent to). There can hardly be any misunderstanding,
since — and = are always relations between propositions.

3 is to be read as ‘there is an’. Thus

Jl.1<l<m.l|m (p- 2)
means ‘there is an [ such that (i) 1 << ! < m and (ii) / divides m’.
€ is the relation of a member of a class to the class. Thus
meS.neS—>(mtn)e S (p- 19)
means ‘if m and n are members of S then m-+4n and m—n are members
of §°.

A star affixed to the number of a theorem (e.g. Theorem 15*) means

that the proof of the theorem is too difficult to be included in the book.

It is not affixed to theorems which are not proved but may be proved
by arguments similar to those used in the text.
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I
THE SERIES OF PRIMES (1)

1.1. Divisibility of integers. The numbers
pruy =By 8, al W 1, B
are called the rational integers, or simply the integers; the numbers
0,1, 2,3,
the non-negative integers; and the numbers
1,2, 3,..

the positive integers. The positive integers form the primary subject-
matter of arithmetic, but it is often essential to regard them as a sub-
class of the integers or of some larger class of numbers.

In what follows the letters without "0

a,b,..,n, p,...,x,Y,..

will usually denote integers, which will sometimes, but not always, be
subject to further restrictions, such as to be positive or non-negative.
We shall often use the word ‘number’ as meaning ‘integer’ (or ‘positive
integer’, etc.), when it is clear from the context that we are considering
only numbers of this particular class.

An integer a is said to be divisible by another integer b, not 0, if
there is_a third integer ¢ such that
a = be.

If a and b are positive, ¢ is necessarily positive. We express the fact
that a is divisible by b, or b is a divisor of a, by

Thus lla, ala;
and b }0 for every b but 0. We shall also sometimes use
bla

to express the contrary of b |a. It is plain that
bla.clb — c|a,
{ bla — beclac

if ¢ % 0, and cla.c|b — c|matnb

—l—~
for all integral m and n.

1.2. Prime numbers. In this section and until § 2.9 the numbers

considered are generally positive integers.f Among the positive integers
+ There are occasional exceptions, as in §§ 1.7, where e? is the exponential function of
analysis.



