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Preface

The carbohydrates or saccharides constitute the most abundant group of com-
pounds found in nature. They are structurally very diverse and are endowed
with a wealth of stereochemical properties. Saccharides are available in cyclic
and acyclic forms, can have different chain lengths and oxidation and reduc-
tion states, and can be substituted with a wide range of functionalities. Fur-
thermore, monosaccharides can be linked together through glycosidic link-
ages to give oligo- or polysaccharides. Many saccharides are readily and
cheaply available and provide an attractive, renewable source of material.

Not surprisingly, these compounds are important starting materials in
organic synthesis, and there are thousands of research papers and numerous
industrial processes in which carbohydrates feature prominently.

This book provides broad coverage of the use of carbohydrates in organic
synthesis, at postgraduate student level. Each chapter describes established
and widely used methods and approaches, but also covers recent and promis-
ing reports. Many citations to the primary literature are provided. It is hoped,
therefore, that this book will also be of use to synthetic organic chemists and
carbohydrate chemists in academic and industrial laboratories.

The authors recognise that one book cannot cover all aspects of synthetic
carbohydrate chemistry. Part A focuses on monosaccharide chemistry, com-
plex oligosaccharides and glycoconjugate synthesis. For a long time, this area
of chemistry was the domain of a small and specialised group of researchers.
In the early eighties, it became apparent that oligosaccharides are involved in
many important biological processes, such as cell-cell recognition, fertilisa-
tion, embryogenesis, neuronal development, viral and bacterial infections
and tumour cell metastasis. Consequently, the preparation of complex glyco-
conjugates became part of mainstream organic chemistry and it is now part
of the undergraduate or postgraduate chemistry curriculum in many univer-
sities. Chapter one covers important properties of saccharides, such as con-
figuration, conformation, the anomeric effect and equilibrium composition in
solution. This basic knowledge is key to many of the discussions that follow.
The next two chapters detail the use of protecting groups in carbohydrate
chemistry and the preparation of functionalised monosaccharides. Chapters
four and five deal with glycosidic bond chemistry, preparation of complex
oligosaccharides and the synthesis of glycopeptides.

Part B discusses enantioselective natural product synthesis from mono-
saccharides. Nowadays, most natural product syntheses are performed in an
asymmetric manner. This development is due principally to the realisation
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that enantiomers may have very different biological properties: one of them
may have the desired property, while the other may be potentially harmful,
or at least undesirable. Many methods are available for obtaining compounds
in an optically pure form. However, each method involves, at a particular
stage, a chiral molecule obtained from a natural source, either by using a
chiral starting material or chiral auxiliary, or by employing a chiral catalyst.
Carbohydrates have been used extensively as chiral starting materials but
they have also been utilised as chiral auxiliaries and ligands of chiral cata-
lysts. The examples covered in chapters six to eighteen illustrate the use of
carbohydrates in the synthesis of a wide range of natural products. In many
cases, the origin of the starting material cannot be recognised in the final
product. These chapters demonstrate how the rich stereochemistry of carbo-
hydrates can be used efficiently to install chiral centres into target com-
pounds. To ensure that this material is suitable for teaching, emphasis is
placed on retrosynthetic analysis as well as on mechanistic explanations for
key and novel reactions.

Geert-Jan Boons and Karl J. Hale
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1 Mono- and oligosaccharides: structure,
configuration and conformation

G.-J. Boons

1.1 Introduction

Carbohydrates constitute the most abundant group of natural products.
This fact is exemplified by the process of photosynthesis, which alone
produces 4 x 10'*kg of carbohydrates each year. As their name implies,
carbohydrates were originally believed to consist solely of carbon and
water and thus were commonly designated by the generalised formula
C.(H,0),. The present-day definition' is that ‘the carbohydrates’ are a
much larger family of compounds, comprising monosaccharides, oligo-
saccharides and polysaccharides, of which monosaccharides are the
simplest compounds, as they cannot be hydrolysed further to smaller
constituent units. Furthermore, the family comprises substances derived
from monosaccharides by reduction of the anomeric carbonyl group
(alditols), oxidation of one or more terminal groups to carboxylic acids or
replacement of one or more hydroxyl group(s) by a hydrogen, amino or
thiol group or a similar heteroatomic functionality. Carbohydrates can
also be covalently linked to other biopolymers, such as lipids (glycolipids)
and proteins (glycoproteins).

Carbohydrates are the main source of energy supply in most cells.
Furthermore, polysaccharides such as cellulose, pectin and xylan
determine the structure of plants. Chitin is a major component of the
exoskeleton of insects, crabs and lobsters. Apart from these structural
and energy storage roles, saccharides are involved in a wide range of
biological processes. In 1952, Watkins disclosed that the major blood
group antigens are composed of oligosaccharides.” Carbohydrates are
now implicated in a wide range of processes® such as cell—cell recognition,
fertilisation, embryogenesis, neuronal development, hormone activities,
the proliferation of cells and their organisation into specific tissues, viral
and bacterial infections and tumour cell metastasis. It is not surprising
that saccharides are key biological molecules since by virtue of the
various glycosidic combinations possible they have potentially a very high
information content.*

In this chapter, the configurational, conformational and dynamic
properties of mono- and oligosaccharides will be discussed and, in
general, reference is made to reviews that cover these aspects. These
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properties, as described in the discussion which follows, are not placed in
a historical context.

1.2 Configuration of monosaccharides® ¢

Monosaccharides are chiral polyhydroxy carbonyl compounds, which
often exist in a cyclic hemiacetal form. Monosaccharides can be divided
into two main groups according to whether their acyclic form possesses
an aldehyde (aldoses) or keto group (ketoses). These, in turn, are further
classified, according to the number of carbon atoms in the monomeric
chain (3-10) into trioses, tetroses, pentoses, hexoses, etc. and the types of
functionalities that are present. D-Glucose is the most abundant
monosaccharide found in nature and has been studied in more detail
than any other member of the family. p-Glucose exists in solution as a
mixture of isomers. The linear form of glucose is energetically
unfavourable relative to the cyclic hemiacetal forms. Ring closure to
the pyranose form occurs by nucleophilic attack of the C(5) hydroxyl on
the carbonyl carbon atom of the acyclic species (Scheme 1.1). Hemiacetal

6_OH OH
4 5 0
HO 2 HO (0]
HO OH HO
3  HO 1 0 No
\ \ / OH
f-D-glucopyranose 2 —OH a-D-glucopyranose
HO— 3
4 —OH \
HO / i s \ HO
HO™ (o) ' o)
HO HO OH
OH OH
B-D-glucofuranose a-D-glucofuranose

Scheme 1.1 Different forms of p-glucose.

ring formation generates a new asymmetric carbon atom at C(1), the
anomeric centre, thereby giving rise to diastereoisomeric hemiacetals
which are named o and B anomers depending on whether the C(1)
substituent resides on the bottom or top of the sugar ring. Cyclisation
involving O(4) rather than O(5) results in a five-membered ring
structurally akin to furan and is therefore designated as a furanose.
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Accordingly, the six-membered pyran-like monosaccharides are termed
pyranoses.

All the common hexoses contain four asymmetric centres in their linear
form and therefore 2* (16) stereoisomers exist which can be grouped into
eight pairs of enantiomers. The pairs of enantiomers are classified as b
and L sugars. In the D sugars the highest numbered asymmetric hydroxyl
group [C(5) in glucose] has the same configuration as the asymmetric
centre in D-glyceraldehyde and, likewise, for all L sugars the configura-
tion is that of L-glyceraldehyde (Figure 1.1). The acyclic and pyranose
forms of the p-aldoses are depicted in Figures 1.2 and 1.3, respectively.

0) o)

. . L

/ =z / =

OH |:OH HO HO{
OH OH OH OH
D-glyceraldehyde D-series L-glyceraldehyde L-series

Figure 1.1 D and L sugars.

Monosaccharides have been projected in several ways, the Fischer
projection being the oldest (Figure 1.4). In the Fischer projection, the
monosaccharides are depicted in an acyclic form and the carbon chain
is drawn vertically, with the carbonyl group (or nearest group to the
carbonyl) at the top. Each carbon atom is rotated around its vertical axis
until all of the C—C bonds lie below a curved imaginary plane. It is only
when the projection of this plane is flattened that it can be termed a
Fischer projection. In the o anomer the exocyclic oxygen atom at the
anomeric centre is formally cis, in the Fischer projection, to the oxygen of
the highest-numbered chiral centre [C(5) in glucose]; in the B anomer the
oxygens are formally trans.

Haworth introduced his formula to give a more realistic picture of
the cyclic forms of sugars. The rings are derived from the linear form and
drawn as lying perpendicular to the paper with the ring oxygen away
from the viewer and are observed obliquely from above. The chair
conformation gives a much more accurate representation of the mo-
lecular shape of most saccharides and is the preferred way of drawing
these compounds. It has to be noted that the Mills formula and zig-zag
depiction are particularly useful for revealing the stereochemistry of the
carbon centres of the sugars.
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0]

4
-
OH
(o) p-glyceraldehyde
4 0
OH “
OH HO
OH OH
B SEHIRasD D—threogeH
/O /0 /O /O
OH HO OH HO
OH OH HO HO
OH OH OH OH
OH OH OH OH
o-ribose p-arabinose D-xylose D-lyxose
/O /O /o /o /O /O /O /O
OH HO OH HO OH HO OH HO
OH OH HO HO OH OH HO HO
OH OH OH OH HO HO HO HO
OH OH OH OH OH OH OH OH
OH OH OH OH OH OH OH OH
p-allose p-altrose  p-glucose  p-mannose D-gulose p-idose p-galactose  Dp-talose

Figure 1.2 Acyclic forms of the p-aldoses.

Apart from the monosaccharides depicted in Figure 1.3, many other
types are known. Several natural occurring monosaccharides have more
than six carbon atoms and these compounds are named the higher carbon
sugars. L-Glycero-p-manno-heptose is such a sugar and is an important
constituent of lipopolysaccharides (LPS) of Gram-negative bacteria
(Figure 1.5).

Some saccharides are branched and these types are found as
constituents of various natural products. For example, p-apiose occurs
widely in plant polysaccharides. Antibiotics produced by the micro-
organism Streptomyces are another rich source of branched chain sugars.

As already mentioned, the ketoses are an important class of sugars.
Ketoses or uloses are isomers of the aldoses but with the carbonyl group
occurring at a secondary position. In principle, the keto group can be at
each position of the sugar chain, but in naturally occurring ketoses the
keto group, with a very few exceptions, is normally at the 2-position. b-
Fructose is the most abundant ketose and adopts mainly the pyranose
form,
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0.
OH
OH OH
p-erythrofuranose HO
A= SE =N
HO
HO OH HO OH
D-ribopyranose D-arabinopyranose
OH OH OH OH
HO HO
HO A Ho Q HO 4 HO -0
HO HO
HO HO
HO OH HO OH OH OH
D-allopyranose D-altropyranose D-glucopyranose D-mannopyranose
0.
HO
OH
OH
p-threofuranose HO
HO Q HO G
HO HO
R OH OH
D-xylopyranose D-lyxopyranose
Ho —OH HO —OH HO —OH HO —OH
HO
0 HO o -0 0
HO HO
HO HO
HO OH HO OH OH OH
D-gulopyranose D-idopyranose D-talopyranose D-galactopyranose

Figure 1.3 Cyclic forms of a-p-aldoses.

The uronic acids are aldoses that contain a carboxylic acid group as the
chain-terminating function. They occur in nature as important constitu-
ents of many polysaccharides. The ketoaldonic acids are another group
of acidic monosaccharides, and notable compounds of this class are 3-
deoxy-pD-manno-2-octulosonic acid (Kdo) and N-acetyl neuraminic acid
(Neu5SAc). Kdo is a constituent of LPS of Gram-negative bacteria and
links an antigenic oligosaccharide to Lipid A. N-Acetyl-neuraminic acid
is found in many animal and bacterial polysaccharides and is critically
involved in a host of biological processes.



