wRiNe BIRE Bt E M & F & 5l

ARG E L

P

( J&3CHR )

[%#] Andrew W. Appel #

modern
compiler
implementation
ne

andrew w. appel

DS rL e

POSTS & TELECOM PRESS

®w

e P - A SO bbb,



‘rurive LELT BT T ELS

Modern Compiler Implementation in C

BLAR 23 P S
@;{;:BC EE A

Andrew W. Appel

(%] Maia Ginsburg

A BOip e AR L



FHfemgE (CIP) %l

BARGRIRIRIE: CEBESHR / (35 FMIRIR (Appel, A. W), (3£) &k (Ginsburg, M.) .
—Jbx: ARMSHHBARE, 2005.9

(ERE R EYLRZERFD

ISBN 7-115-13771-4 :
... II. OM... @%... M. ORFEF—BEFRII—RX QCEEF —BFRITt—
®Y V. TP314

o [ i A B 151 CIP Bz (2005) 58 092228 5

R AL

Andrew W. Appel and Maia Ginsburg: Modern Compiler Implementation in C (ISBN: 0-521-60765-5).

Originally published by Cambridge University Press in 1998.

This reprint edition is published with the permission of the Syndicate of the Press of the University of Cambridge
Cambridge, England. .
Copyright ©1998 by Andrew W. Appe! and Maia Ginsburg.

This edition is licensed for distribution and sale in the People’s Republic of China only, excluding Hong Kong,
Taiwan and Macao and may not be distributed and sold elsewhere.

AB R B F H M .

R FEST I ENRE B SIHF K2 H AR AT AR A OB re R AR
HARIXBREREARLINERA (FE. &5, RMNEREN HERT.
MRLERE, RELLER.

B R BT EALELE R 5
MK HRIFRE—C ESHIR (FEXHD)
* E [3] Andrew W. Appel Maia Ginsburg
HREmE BRERE

¢ ANRIFHEBBAHEET  ERWRXRSBEE 145
fE%% 100061 HTHMY  315@ptpress.com.cn
4k http://www.ptpress.com.cn

LR R EN R BRI
FERESIEI R RATREH
& JFFA: 800x1000 1/16

Epik: 34.75
E¥: 764 TF 20059 AF 1K
Ep¥: 1-3 000 fi} 20054 9 AL 1 KEIR

EHREREES EF: 01-2005-4374 5
ISBN 7-115-13771-4/TP » 4891
EHr: 59.00 T
REREAL: (010)67132705 ENRREAL: (010)67129223




APemytd T ARG RROE MRS, Q8 WM. BEST. MRIEE.
EXRE. FEAEERR. HSEF. BERMT. FESHMRURBTNRES. 264
BRED, F-BoRFNEMIR ERTHE -NHEFRBRE (—AEH): B85
RELAEHE, QEEANFETMREES ., REE. EFIRL. SSA (FEREE
X B FREMMNLSE, BT RERBIMALEE. BHEIThEERM T —
MICHETHENLIMA, BFEARANERTRT, FETUE—ZHNaIE - IhEE%
1% 1% 2% o

ABEA T RERA EALRMR S AR A ST A, BAHBPIARRTERA

INGE =2

S
W



Preface

Over the past decade, there have been several shifts in the way compilers are
built. New kinds of programming languages are being used: object-oriented
languages with dynamic methods, functional languages with nested scope
and first-class function closures; and many of these languages require garbage
collection. New machines have large register sets and a high penalty for mem-
ory access, and can often run much faster with compiler assistance in schedul-
ing instructions and managing instructions and data for cache locality.

This book is intended as a textbook for a one- or two-semester course
in compilers. Students will see the theory behind different components of a
compiler, the programming techniques used to put the theory into practice,
and the interfaces used to modularize the compiler. To make the interfaces
and programming examples clear and concrete, I have written them in the C
programming language. Other editions of this book are available that use the
Java and ML languages.

Implementation project. The “student project compiler” that I have outlined
is reasonably simple, but is organized to demonstrate some important tech-
niques that are now in common use: abstract syntax trees to avoid tangling
syntax and semantics, separation of instruction selection from register alloca-
tion, copy propagation to give flexibility to earlier phases of the compiler, and
containment of target-machine dependencies. Unlike many “student compil-
ers” found in textbooks, this one has a simple but sophisticated back end,

allowing good register allocation to be done after instruction selection.
Each chapter in Part I has a programming exercise corresponding to one
module of a compiler. Software useful for the exercises can be found at

http://www.cs.princeton.edu/ appel/modern/c




PREFACE

Exercises. Each chapter has pencil-and-paper exercises; those marked with
a star are more challenging, two-star problems are difficult but solvable, and
the occasional three-star exercises are not known to have a solution.

Course sequence. The figure shows how the chapters depend on each other.

A
Lexical Abstract Semantic
2. — 3, Parsing — 4. —8S.
Analysis S 1 B
y: _ yntax Analysis ) g
6 Activation " Translation to 8 Basic Blocks 5 —
* Records * Intermediate Code * and Traces v S
[
A E
__ o Imstruction Putting it A
1. ln{r\oduction 9. Selection 12. All Together
b
Liveness Register / ]
10. \ nalysis 11 Alocation §
o
Static Single-
Dataflow Loop
17, — 18. —— 19. Assignment
Analysis Optimizations Form Vo
Functional Polymerphic Pipelining, 3
18. —16. 20.
Languages 16 Types Scheduling r.,i,
13 Garbage 14 Object-Oriented 2 Memory
* Collection * Languages * Hierarchies v

o A one-semester course could cover all of Part I (Chapters 1-12), with students
implementing the project compiler (perhaps working in groups); in addition,
lectures could cover selected topics from Part I1.

e An advanced or graduate course could cover Part II, as well as additional
topics from the current literature. Many of the Part II chapters can stand inde-
pendently from Part [, so that an advanced course could be taught to students
who have used a different book for their first course.

o In a two-quarter sequence, the first quarter could cover Chapters 1-8, and the
second quarter could cover Chapters 9-12 and some chapters from Part II.

Acknowledgments. Many people have provided constructive criticism or
helped me in other ways on this book. I would like to thank Leonor Abraido-
Fandino, Scott Ananian, Stephen Bailey, Max Hailperin, David Hanson, Jef-
frey Hsu, David MacQueen, Torben Mogensen, Doug Morgan, Robert Netzer,
Elma Lee Noah, Mikael Petterson, Todd Proebsting, Anne Rogers, Barbara
Ryder, Amr Sabry, Mooly Sagiv, Zhong Shao, Mary Lou Soffa, Andrew Tol-
mach, Kwangkeun Yi, and Kenneth Zadeck.




Contents

Part] Fundamentals of Compilation

1 Introduction 3
1.1 Modules and interfaces 4
1.2 Tools and software 5
1.3 Data structures for tree languages 7
2 Lexical Analysis 16
2.1 Lexical tokens 17
2.2 Regular expressions 18
2.3 Finite auntomata 21
2.4 Nondeterministic finite automata 24
2.5 Lex: a lexical analyzer generator 30
3 Parsing 39
3.1 Context-free grammars 41
3.2 Predictive parsing 46
3.3 LR parsing 56
3.4 Using parser generators 69
3.5 Error recovery 76
4 Abstract Syntax 88
4.1 Semantic actions ‘ 88
4.2 Abstract parse trees 92
5 Semantic Analysis 103
5.1 Symbol tables 103
5.2 Bindings for the Tiger compiler 112




CONTENTS

10

11

12

13

5.3 Type-checking expressions
5.4 Type-checking declarations

Activation Records
6.1 Stack frames
6.2 Frames in the Tiger compiler

Translation to Intermediate Code
7.1 Intermediate representation trees
7.2 Translation into trees
7.3 Declarations

Basic Blocks and Traces
8.1 Canonical trees
8.2 Taming conditional branches

Instruction Selection
9.1 Algorithms for instruction selection
9.2 CISC machines
9.3 Instruction selection for the Tiger compiler

Liveness Analysis
10.1 Solution of dataflow equations
10.2 Liveness in the Tiger compiler

Register Allocation

11.1 Coloring by simplification

11.2 Coalescing

11.3 Precolored nodes

11.4 Graph coloring implementation
11.5 Register allocation for trees

Putting It All Together

Part II Advanced Topics

Garbage Collection
13.1 Mark-and-sweep collection
13.2 Reference counts

115
118

125
127
135

150
151
154
170

176
177
185

191
194
202
205

218
220
229

235
236
239
243
248
257

265

273
273
278




CONTENTS

13.3
134
13.5
13.6
13.7

Copying collection
Generational collection
Incremental collection
Baker’s algorithm
Interface to the compiler

14 Object-Oriented Languages

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Classes

Single inheritance of data fields
Multiple inheritance

Testing class membership

Private fields and methods

Classless languages

Optimizing object-oriented programs

15 Functional Programming Languages

15.1
15.2
15.3
15.4
15.5
15.6
15.7

A simple functional language
Closures

Immutable variables

Inline expansion

Closure conversion

Efficient tail recursion

Lazy evaluation

16 Polymorphic Types

16.1
16.2
i6.3
16.4

Parametric polymorphism

Type inference

Representation of polymorphic variables
Resolution of static overloading

17 Dataflow Analysis

17.1
17.2
17.3
17.4
17.5

Intermediate representation for flow analysis
Various dataflow analyses

Transformations using dataflow analysis
Speeding up dataflow analysis

Alias analysis

18 Loop Optimizations

18.1

Dominators

280
285
287
290
291

299
299
302
304
306
310
310
311

315
316
318
319
326
332
335
337

350
351
359
369
378

383
384
387
392
393
402

410
413




CONTENTS

18.2
18.3
18.4
18.5

19 Static
19.1
19.2
19.3
194
19.5
19.6
19.7

Loop-invariant computations
Induction variables
Array-bounds checks

Loop unrolling

Single-Assignment Form

Converting to SSA form

Efficient computation of the dominator tree
Optimization algorithms using SSA
Arrays, pointers, and memory

The control-dependence graph

Converting back from SSA form

A functional intermediate form

20 Pipelining and Scheduling

20.1
20.2
203

Loop scheduling without resource bounds
Resource-bounded loop pipelining
Branch prediction

21 The Memory Hierarchy

21.1
21.2
21.3
214
215
21.6

Cache organization
Cache-block alignment
Prefetching

Loop interchange
Blocking

Garbage collection and the memory hierarchy

Appendix: Tiger Language Reference Manual

Al
A2
A3
A4
AS

Bibliography

Index

Lexical issues
Declarations

Variables and expressions
Standard library

Sample Tiger programs

418
419
425
429

433
436

451
457
459
462

474
478
482
490

498
499
502
504
510
51
514

518
518
518
521
525
526

528
537




PART ONE

Fundamentals of
Compilation







1

Introduction

A compiler was originally a program that “compiled”
subroutines [a link-loader]. When in 1954 the combina-
tion “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into
the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating
programming languages into executable code. A modern compiler is often or-
ganized into many phases, each operating on a different abstract “language.”
The chapters of this book follow the organization of a compiler, each covering
a successive phase.

To illustrate the issues in compiling real programming languages, I show
how to compile Tiger, a simple but nontrivial language of the Algol family,
with nested scope and heap-allocated records. Programming exercises in each
chapter call for the implementation of the corresponding phase; a student
who implements all the phases described in Part I of the book will have a
working compiler. Tiger is easily modified to be functional or object-oriented
(or both), and exercises in Part II show how to do this. Other chapters in Part
11 cover advanced techniques in program optimization. Appendix A describes
the Tiger language.

The interfaces between modules of the compiler are almost as important
as the algorithms inside the modules. To describe the interfaces concretely, it
is useful to write them down in a real programming language. This book uses
the C programming language.




CHAPTER ONE. INTRODUCTION

Environ-
ments
§ 2
go Q S Tables
2 g 2| Parsing | 2|semantic |3 N 8, S
alL S S s [Semantic |5 2| Canon- | &/ Instruction | &
N ex § Parse 3 Actions | $|Analysis | § Translate | &< icalize |™| Selection | 9
o 15 I = & & <
5 S 3 ~ ~ ~
S < Frame
Frame
Layout
)
=
=2 v S
s S % O %
< S 3 B S
[ b K~ 00 Y 8o
£! Control [ 8! Data | o . %o .§ 3 §
8| Flow O Flow |8 AR“"gls‘F' 2 Code Assembler | Q| Linker |
<| Analysis | 2| Analysis | ¥ location | <~ | Emission = = X
~ N N -
R © 3 E S S
L foyd V S 1)
g 5 3 g S
~ > < .% =
[~
FIGURE 1.1, Phases of a compiler, and interfaces between them.

1.1

MODULES AND INTERFACES

Any large software system is much easier to understand and implement if
the designer takes care with the fundamental abstractions and interfaces. Fig-
ure 1.1 shows the phases in a typical compiler. Each phase is implemented as
one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the compo-
nents. For example, to change the target-machine for which the compiler pro-
duces machine language, it suffices to replace just the Frame Layout and In-
struction Selection modules. To change the source language being compiled,
only the modules up through Translate need to be changed. The compiler
can be attached to a language-oriented syntax editor at the Abstract Syntax
interface.

The leaming experience of coming to the right abstraction by several itera-
tions of think—implement—redesign is one that should not be missed. However,
the student trying to finish a compiler project in one semester does not have




1.2. TOOLS AND SOFTWARE

this luxury. Therefore, I present in this book the outline of a project where the
abstractions and interfaces are carefully thought out, and are as elegant and
general as I am able to make them.

Some of the interfaces, such as Abstract Syntax, IR Trees, and Assem, take
the form of data structures: for example, the Parsing Actions phase builds an
Abstract Syntax data structure and passes it to the Semantic Analysis phase.
Other interfaces are abstract data types; the Translate interface is a set of
functions that the Semantic Analysis phase can call, and the Tokens interface
takes the form of a function that the Parser calls to get the next token of the
input program. l

DESCRIPTION OF THE PHASES
Each chapter of Part I of this book describes one compiler phase, as shown in
Table 1.2

This modularization is typical of many real compilers. But some compil-
ers combine Parse, Semantic Analysis, Translate, and Canonicalize into one
phase; others put Instruction Selection much later than I have done, and com-
bine it with Code Emission. Simple compilers omit the Control Flow Analy-
sis, Data Flow Analysis, and Register Allocation phases.

I have designed the compiler in this book to be as simple as possible, but
no simpler. In particular, in those places where corners are cut to simplify the
implementation, the structure of the compiler allows for the addition of more
optimization or fancier semantics without violence to the existing interfaces.

TOOLS AND SOFTWARE

Two of the most useful abstractions used in modern compilers are context-
free grammars, for parsing, and regular expressions, for lexical analysis. To
make best use of these abstractions it is helpful to have special tools, such
as Yacc (which converts a grammar into a parsing program) and Lex (which
converts a declarative specification into a lexical analysis program).

The programming projects in this book can be compiled using any ANSI-
standard C compiler, along with Lex (or the more modern Flex) and Yacc
(or the more modern Bison). Some of these tools are freely available on the
Internet; for information see the World Wide Web page

http://www.cs.princeton.edu/ appel/modern/c




CHAPTER ONE. INTRODUCTION

Chapter Phase Description

2 Lex Break the source file into individual words, or tokens.

3  Parse Analyze the phrase structure of the program.

4  Semantic Build a piece of abstract syntax tree corresponding to each

Actions phrase.
5  Semantic Determine what each phrase means, relate uses of variables to
Analysis their definitions, check types of expressions, request translation
of each phrase.
6  Frame Place variables, function-parameters, etc. into activation records
Layout (stack frames) in a machine-dependent way.

7  Translate Produce intermediate representation trees (IR trees), a nota-
tion that is not tied to any particular source language or target-
machine architecture.

8  Canonicalize Hoist side effects out of expressions, and clean up conditional
branches, for the convenience of the next phases.

9  Instruction Group the IR-tree nodes into clumps that correspond to the ac-

Selection tions of target-machine instructions.

10  Control Analyze the sequence of instructions into a control flow graph
Flow that shows all the possible flows of control the program might
Analysis follow when it executes.

10  Dataflow Gather information about the flow of information through vari-
Analysis ables of the program; for example, liveness analysis calculates

the places where each program variable holds a still-needed value
(is live).

11 Register Choose a register to hold each of the variables and temporary
Allocation values used by the program; variables not live at the same time

can share the same register.

12 Code Replace the temporary names in each machine instruction with
Emission machine registers.

TABLE 1.2. Description of compiler phases.

Source code for some modules of the Tiger compiler, skeleton source code
and support code for some of the programming exercises, example Tiger pro-
grams, and other useful files are also available from the same Web address.
The programming exercises in this book refer to this directory as $TIGER/
when referring to specific subdirectories and files contained therein.




1.3. DATA STRUCTURES FOR TREE LANGUAGES

Stm — Stm ; Stm (CompoundStm)

ExpList — Exp , ExpList (PairExpList)

Stm — id := Ex| (AssignStm . .

Stm — print ( gxpList ) (PrﬁltStm; Ej,tp List = Exp (LastExpList)

£ i iy 2t o

Exp = num (NumExp) Binop - x (Times)

Exp — Exp Binop Exp (OpExp) Bi P .

Exp — (Stm, Exp) (EseqExp) inop = / (D)
GRAMMAR 1.3. A straight-line programming language.

1.3

DATA STRUCTURES FOR TREE LANGUAGES

Many of the important data structures used in a compiler are intermediate
representations of the program being compiled. Often these representations
take the form of trees, with several node types, each of which has different
attributes. Such trees can occur at many of the phase-interfaces shown in
Figure 1.1.

Tree representations can be described with grammars, just like program-
ming languages. To introduce the concepts, I will show a simple program-
ming language with statements and expressions, but no loops or if-statements
(this is called a language of straight-line programs).

The syntax for this language is given in Grammar 1.3.

The informal semantics of the language is as follows. Each Stm is a state-
ment, each Exp is an expression. s;; s; executes statement s), then staterment
§5. i : =e evaluates the expression e, then “stores” the result in variable i.
print(e;, es, ..., e,) displays the values of all the expressions, evaluated
left to right, separated by spaces, terminated by a newline.

An identifier expression, such as i, yields the current contents of the vari-
able i. A number evaluates to the named integer. An operator expression
e, op e, evaluates e, then e;, then applies the given binary operator. And
an expression sequence (s, €) behaves like the C-language “comma” opera-
tor, evaluating the statement s for side effects before evaluating (and returning
the result of) the expression e.




