The Small-C Handbook

=]

James E. Hendrix

The Small-C Handbook

James E. Hendrix

Office of Computing and Information Systems
The University of Mississippi

Reston Publishing Company, Inc.
A Prentice-Hall Compdny
Reston, Virginia

% A Reston Computer Group Book

A copy of the compiler described in this book may be
obtained by sending $25 (check or money order| to:

J. E. Hendrix
Box 8378
University, MS 38677-8378

Distribution is on standard 8-inch SSSD CP/M diskettes
containing all source and object files for Small-C version 2.1
implemented for use with Microsoft's MACRO-80 assembler
package. Add $3 for orders outside of the United States.

CP/M is a registered trademark of Digital Research.
MACRO-80 is a registered trademark of Microsoft, Inc.

ISBN 0-8359-7012-4

© 1984 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be reproduced,
in any way or by any means, without permission in writing
from the publisher.

ic 9 87 65 4 3 21

Printed in the United States of America

Ak

Preface

We tend to like the programming language we leamn first and to accept
new ones with great reluctance. It seems we would rather suffer than
learn a better way, especially if it means learning a new language. So it
is noteworthy when a new progtamming language overcomes these
tendencies and receives enthusiastic acceptance from experienced pro-
grammers. Such is the case with the C language. Its popularity is
booming, and many microcomputer programmers are looking for low-
cost ways of getting started in C. Since 1980, the Small-C compiler has
satisfied that desire. It offers a respectable subset of the C language at a
rock-bottom price. For applications not requiring real numbers, it offers
clear advantages over BASIC and assembly language. And programs
written for Small-C are upward-compatible with full-C compilers.
Anyone using or considering Small-C will find here a valuable
resource of information about the language and its compiler. This
material should appeal primarily to three classes of readers: -

1. Small-C programmers who need a handbook on the language
and the compiler.

2. Assembly language programmers who wish to increase their
productivity and to write portable code.

3. Professors and students of computer science. Its small size and
the fact that it is written in C instead of assembly language make
Small-C an ideal subject for laboratory projects. Here is a real compiler
that is simple enough to be understood and modified by students.

vii

vili PREFACE

Without much difficulty, it may be transformed into a cross-compiler
or completely ported to other processors. Additional language features
may be added, improvements made, etc. Any number of projects could
be based on the little compiler.

T'his book is not an introductory programming text. Instead, it is
a description of the Small-C language and compiler for people who are
already programming in other languages. Commensurate with that ob-
jectivz, the text is brief and to the point. Section 1 covers program
tran. ation concepts. Beginning with the CPU, it presents a survey of
maci:ne-language concepts, assembly language, and the use of
assemblers, loaders, and linkers. Enough information is given to per-
mit a complete understanding of the assembly language code generated
by the compiler. This material is based on the 8080 CPU since the
compiler was originally written for that processor and it is still the
most popular implementation of Small-C. Chapter 1 describes the
8080 CPU, and Chapter 3 presents the 8080 instruction set. Fhese two
chapters are required reading for anyone not already familiar with 8080
assembly language programming.

Section 2 introduces the Small-C language. Its chapters present
the elements of the language in an order that builds from simple to
comprehensive concepts. Emphasis is placed on accuracy and brevity,
so that these chapters meet two needs: they provide a quick but
thorough treatment of the language, and also serve as reference
material.

Section 3 describes the compiler itself. Chapters deal with 1/0
concepts, standard functions, invoking the compiler, code generation,
program efficiency considerations, and how to use the compiler to
generate new versions of itself.

Finally, there are appendices containing the entire source listings of
the compiler and its library of arithmetic and logical routines. There are
also appendices designed for quick reference by the Small-C programmer.

My sincere appreciation goes to those who encouraged and
assisted me in this work. To Marlin Quverson, who conceived the
need for such a book and convinced the publisher. To Ron Cain, who
created the original Small-C compiler and provided many useful
guidelines for developing the current version. To Ernest Payne, who
provided the impetus and most of the code for developing the CP/M
library for version 2.1. To Neil Block for his assistance in developing
various features introduced with version 2.0—mainly the new control
statements. To Andrew Macpherson and Paul West for reporting

PREFACE ix

several bug fixes and enhancements. To Jim Wahlman and George
Boswell, who proofed the text for content and grammar, respectively.
To Hal Fulton for his assistance with the galley proofs. And finally, to
my wife Glenda, who dealt so patiently with all that I neglected while
this was in the making.

Introduction

The C programming language was developed in the early seventies by
Dennis M. Ritchie of Bell Telephone Laboratories. It was designed to
provide direct access to those objects known to computer processors:
bits, bytes, words, and add®esses. For that reason, and because it is a
block-structured language resembling ALGOL and Pascal, it is an ex-
cellent choice for systems programming. In fact, it is the language of
the UNIX operating system.

C is good for other uses, too. It is well suited to text processing,
engineering, and simulation applications. Other languages have specific
features which in many cases better suit them to particular tasks. The
complex numbers of FORTRAN, the matrix operations of PL/I, and the
sort verb, report writer feature, and edited moves of COBOL come to
mind. C has none of these. Nevertheless, C is becoming a very popular
language for a wide range of applications, and for good reason—pro-
grammers like it.

Those who use C typically cite the following reasons for its
popularity: {1} C programs are more portable than most other pro-
grams; (2) C provides a very rich set of expression operators, making it
unnecessary to resort to agsembly language even for bit manipulations;
{3) C programs are compact, but not necessarily to the point of being
cryptic; (4} C includes features which permit the generation of effi-
cient object code; and {5) C is a comfortable language in that it does not
impose unnecessarily awkward syntax on the programmer.

UNIX 1s a registered trademark of Bell Telephone Laboratories

xi

xi INTRODUCTION

For a description of the complete C language as implemented
under the UNIX operating system, the reader is referred to The C Pro-
gramming Language by Brian W. Kernighan and Dennis M. Ritchie
(Englewood Cliffs, N.J : Prentice-Hall, 1978).

In May of 1980, Dr. Dobls Journal ran an article entitled '‘A
Small C Compiler for the 8080s.’’ In the article, Ron Cain presented a
small compiler for a subset of the C language. The most interesting
feature of the compiler, besides its small size, was the language in
which it was written—the same language it compiles It was a self-
compiler. It could be used to compile new versions of itself. With a
simple, one-pass algorithm, it generated assembly language code for
the 8080 processor. Being small, it had its limitations. It recognized
only characters, integers, and one-dimensional arrays of each. The only
loop-control statement was the while statement. There were no Boolean
operators, so the bitwise logical operators : [OR) and & {AND} were used
in their place. But even with these limitations, it was a very capable
language and a delight to use compared to assembly language.

Ron Cain published a complete listing of the compiler and gra-
ciously placed it in the public domain. Both the compiler and the
language came to be known as Small-C. His compiler created a great
deal of interest, and soon found itself running on processors other than
the 8080.

Recognizing the need for improvements, Ron encouraged me to
produce a second version, and in December of 1982 it appeared in Dr.
Dobb’s Journal. The new compiler augmented Small-C with (1) code
optimization, (2] data initialization, {3) conditional compilation, (4)
the extern storage class, (5) the for, doiwhile, switch, and goto
statements, (6) assignment operators, (7) Boolean operators, (8} the
one’s complement operator, and various other features. This book
describes an updated version (2.1) of that compiler and its language.

Section 1 is a survey of program translation concepts. If you are
already familiar with the use of compilers, assemblers, loaders, and
linkers, you may wish to proceed directly to Section 2. If you are not
familiar with the 8080 CPU, however, you should read Chapters 1 and
3 dealing with the 8080 and its instruction set before proceeding to
Section 2.

Section 2 describes the Small-C language. The order of presenta-
tion moves from sjmple to complex. Each aspect of the language is
given a chapter to itself and builds on preceding material. The result is
a section which both introduces the language and serves as reference
material.

Section 3 is dedicated to the practical aspects of using the lan-
guage and the compiler.

INTRODUCTION xfh

Seven appendixes finish out the volume. Appendix A is a com-
plete source listing of the compiler Appendix B is a listing of the
logical and arithmetic library Appendix C lists areas of possible in-
compatibility with the full-C language, referring to the body of the text
for further details Appendix D lists and explains the error messages
produced by the compiler Appendix E 1s a code chart of the ASCII
character set Appendix F 1s a quick reference summary for 8080
assembly language programming And Appendix G is a quick reference
summary of the Small-C language and function library

Contents

Preface vii

Introduction «xi
Section 1 Program Translation Concepts 1
Chapter 1 The 8080 Processor 3
Chapter 2 Assembly Language Concepts 8
Chapter 3 The 8080 Instruction Set 13
Chapter 4 Program Translation Tools 23
Section 2 The Small-C Language 29
Chapter 5 Program Structure 31
Chapter 6 Small-C Language Elements 34
Chapter 7 Constants 37
Chapter 8 Variables 40
Chapter 9 Pointers 43
Chapter 10 Arrays 46
Chapter 11 Initial Values 50
Chapter 12 Functions 53
Chapter 13 Expressions 60
Chapter 14 Statements 71

vi. CONTENTS

Chapter 15
Section 3
Chapter 16
Chapter 17
Chapter 18
Chapt\:ar 19
Chapter 20
Apprendix A
Appendix B
Appeadix C
Appendix D
Appendix E
Appendix F
Appendix G

Preprocessor Commands 80

The Small-C Compiler 85

The User Interface 87

Standard Functions 92

Code Generation 110

Efficiency Considerations 134
Compiling the Compiler 144
Small-C Source 147

Arithmetic and Logical Library 216
Compatibility with Full C 226
Error Messages 229

ASCII Character Set 236

8080 Quick Reference Guide 238
Small-C Quick Reference Guide 242
Bibliography 247

Index 249

Figures

1-1. 8080 CPU Architecture, 5
4-1. Intel Hex Format, 24
16-1. Arguments Passed to Small-C Programs, 89

Tables

CPU Instruction Symbols, 14

CPU Instruction Lengths, 14

8-Bit Load Group, 15

16-Bit Load Group, 16

Exchange Group, 16

8-Bit Arithmetic Group, 17

16-Bit Arithmetic Group, 18

Logical Group, 19

CPU Control Group, 20

Rotate Group, 20

Jump Group, 21

Call and Return Group, 21

Input/Qutput Group, 22

Variable Declarations, 41

Array Declarations, 46
- Permitted Object/Initializer Combinations, 52

Small-C Operators, 62

Standard File-Descriptor Assignments, 87
2 Redirecting Standard Input and Output Files, 88
16-3. Invoking the Compiler, 91
17-1. Printf Examples, 99
19-1. Efficiency of Fetching Variables, 136
19-2 Efficiency of Storing Variables, 137
20-1. Small-C Compiler Source Files, 145

\ i
oNneLN-

'

i
o~

et W wbbw
Tl 1 00 00w ww
{ Ll ol el g \ 1

o
TP
bt OO DN

[g —
*PP

Xvi

I |
b et it

OC 00 00 OO0 OO0 CO M O \D W BN =
1

Ptk ek pend et ek pd pend

— e e
o 00 00
|

18-10.
18-11.
18-12.
18-13.

18-14

18-15.

18-16.
18-17.
18-18.
18-19.
18-20.
18-21.

18-22
18-23

18-24.
18-25.

18-26

18-27.
18-28.
18-29.

i

TABLES/LISTINGS

Listings

Sample Machine-Language Subroutine, 7

Sample Assembly Language Subroutine, 9

Sample Small-C Program, 32

Example of the Use of Pointers, 45

Example of the Use of Arrays, 49

Sample Recursive Function Call, 59

Code Generated by Constant Expressions, 112

Code Generated by Global Objects, 113

Code Generated by Global References, 114

Code Generated by External Declarations, 114
Code Generated by External References, 115

Code Generated by Local Objects/References, 117
Code Generated by Function Arguments/References, 118
Code Generated by Direct Function Calls, 119
Code Generated by Indirect Function Calls, 120
Code Generated by the Logical NOT Operator, 120
Code Generated by the Increment Prefix, 121

Code Generated by the Increment Suffix, 121

Code Generated by the Indirection Operator, 122
Code Generated by the Address Operator, 122

Code Generated by the Division and Modulo Operators,
123

Code Generated by the Addition Operator, 123
Code Generated by the Equality Operator, 123
Code Generated by the Logical AND Operator, 124
Code Generated by Assignment Operators, 125
Code Generated by a Complex Expression, 125
Code Generated by an IF Statement, 126

Code Generated by an IF/ELSE Statement, 127
Code Generated by Tests for Nonzero and Zero, 127
Code Generated by a SWITCH Statement, 128
Code Generated by a WHILE Statement, 129

Code Generated by a FOR Statement, 130

Code Generated by a FOR Without Expressions, 131
Cade Generated by a DO/WHILE Statement, 132
Code Generated by a GOTO Statement, 132

Section 1

Program Translation
Concepts

The term program translation denotes the general process of
translating a program from source language into actions. Two
basic concepts are involved: generation and interpretation.
Generation is the process of translating programs from one
language to another that is closer to machine language, the lan-
guage of the computer's central processing unit {or CPU). Com-
pilers, assemblers, and loaders are generative program translators.
Interpretation is the final stage of program translation. It in-
volves translating programs from language into actions. This
stage is also called program execution. One executes or runs a
program to make it perform its intended function. Interpretation
may be done by another program (an interpreter) or by the CPU.
The CPU scans machine-language programs in memory, perform-
ing the instructions it finds. This is always the last stage of pro-
gram translation since, even if a program is being interpreted by
software, the interpreter itself is being interpreted by the CPU.
Perhaps the best way to go about understanding the program
translation process is to work from the CPU upward. That was
the historical sequence, and it seems most natural to proceed
that way. To save time, we will look at an actual CPU, the Intel
8080—the same one used by the original Small-C compiler.

Chapter 1

The 8080 Processor

F igure 1-1 is a diagram of the 8080 central processing unit and
memory. Memory may be considered a simple array of eight-bit bytes.
Each byte has a unique address which may be expressed as a 16-bit un-
signed binary integer. The first byte is at address 0, the second at ad-
dress 1, the third at address 2, and so on. The highest possible address
is 65535 decimal (FFFF hex). The values stored in memory may repre-
sent either data or instructions that direct the operation of the CPU

Two consecutive bytes may be taken together as a single 16-bit
number and, as such, may represent either data or the address portion
of an instruction These long numbers are called words. They are
always stored with the low-order byte first (the byte having the lowest
address), and the high-order byte following. The CPU is able to read
the value of a memory byte or word by transferring it to a CPU register
(described below). When that happens, the previous contents of the
register are lost, and the value in memory remains unchanged. The
CPU may also write a value into a memory byte or word by transferring
it from a register. In that case the register remains unchanged, and the
original value in memory is replaced. In both cases the CPU must send
the address of the desired byte or word to the memory unit. The ad-
dress of a word is the address of its first (low-order) byte.

The CPU may be viewed as a collection of registers (storage
places) which temporarily holds the values of bytes or words. Registers
are faster than memory, and the instruction set of the CPU is designed
to manipulate register values with greater flexibility. The CPU registers
have the names A, B, C, D, E, F, H, L, PC, and SP. The single-letter
registers are eight bits wide, and the PC and SP registers each have 16

4 PROGRAM TRANSLATION CONCEPTS

bits. Some instructions treat the A, F, B, C, D, E, H, and L registers as
four 16-bit register pairs: AF, BC, DE, and HL. In such cases, the
register denoted by the first letter of the name contains the high-order
byte, and the one denoted by the second letter holds the low-order
byte. Thus, when a 16-bit number is in the HL register pair, H contains
the most significant bits and L the least.

The F register is special, since it is not used to hold data. Rather,
it is a collection of condition flags: bits indicating the conditions pro-
duced by the most recent arithmetic or logical instruction. Each flag
bit has a name. The zero flag Z is set {contains the value one} if the last
arithmetic or logical instruction resulted in a value of zero; otherwise,
it is cleared, or reset (contains the value zero). The sign flag S gives the
sign of the result; it matches the high-order bit of the result—one for
negative values and zero for positive values, The carry flag CY is set if
there is a carry out of (or a borrow into) the leftmost bit position; other-
wise, it is reset The panty flag P serves two purposes. Bitwise logical
instructions set it or clear it according to the parity of the result. An
even number of ones in the result (even parity) sets P, and an odd
number of ones (odd parity) clears it. The eight-bit arithmetic instruc-
tions set P in case of an overflow condition, otherwise they clear it.
These flag bits may be tested by conditional jump, call, and return
instructions, of which more will be said later. The AF register pair is
also called the program status word (PSW) smce F contains status
information

As mentioned earlier, memory contains both data and instruc-
tions. Instructions tell the CPU what operations to perform and in
what order to perform them. Data referenced by instructions are called
operands. Instructions in memory may be one, two, or three bytes
long. The first byte is always a code telling the CPU what kind of
operation to perform. This operation code, or opcode, identifies a par-
ticular instruction from the set of instructions known ta the CPU.

Instructions which make no reference to memory consist of only
an opcode byte. They move data between registers, operate on the con-
tents of registers, and test register values.

Some instructions refer to an immediate operand, an operand
which is included in the instruction itself. If the operand occupies a
byte in memory, then the instruction is two bytes long, an opcode
followed by a one-byte operand If it occupies a word, the instruction is
three bytes long, an opcode followed by the low-order byte of the
operand, and then the high-order byte

Some instructions refer to operands in memory by specifying
their addresses. There are two cases to consider. Some are three-byte
instructions consisting of an opcode followed by a two-byte address in

