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This textbook covers fundamental modeling techniques aimed at bridging diverse temporal
and spatial scales ranging from the atomic level to a full-scale product level. The focus is on
practical multiscale methods that account for fine-scale (material) details but do not require
their precise resolution. The text material evolved from over 20 years of teaching experience,
which included the development of Multiscale Science and Engineering courses at Rensselaer
Polytechnic Institute and Columbia University, as well as from practical experience gained in
the application of multiscale software.

Due to a broad spectrum of application areas, this course is intended to be of interest and
use to a varied audience, including:

+ graduate students and researchers in academia and government laboratories who are inter-
ested in acquiring fundamental skills that will enable them to advance the state-of-the-art in
the field;

* practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries who
are interested in taking advantage of existing multiscale tools; and

+ commercial software vendors who are interested in extending their product portfolios and
tapping into new markets.

This textbook is unique in three respects:

* Theory and implementation. The text provides a detailed exposition of the state-of-the-art
multiscale theories and their insertion into conventional (single-scale) finite element code
architecture.

« Predictability and design. The text emphasizes the robustness and design aspects of multi-
scale methods. This is accomplished via four building blocks: upscaling of information,
systematic reduction of information, characterization of information utilizing experimental
data, and material optimization (Figure 1).
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Figure 1 Building blocks of multiscale design. Upscaling: derivation of coarse-scale equations from
fine-scale equations using homogenization-like theories. Model reduction: reducing the complexity of
solving fine-scale problems. Model characterization: solving an inverse problem for reduced model
parameters. Material optimization: optimizing microstructure based on design criteria

+ Hands-on experience. Included with this textbook is an academic version of the multiscale
design software (MDS-Lite) [1], which serves as a seamless plug-in to commercial software.
A full integration with a built-in coarse-scale solver is also provided.

The material in this book can be covered in a single semester, and a meaningful course can
be constructed from a subset of the chapters in this book for a one-quarter course. Following
the Introduction to Multiscale Methods (Chapter 1), course material is organized in five chro-
nological chapters: Upscaling/Downscaling of Continua (Chapter 2), Upscaling/Downscaling
of Atomistic/Continuum Media (Chapter 3), Reduced Order Homogenization (Chapter 4),
Scale-separation-free Upscaling/Downscaling of Continua (Chapter 5), and Multiscale Design
Software (Chapter 6). Basic knowledge of continuum mechanics and finite elements is
required. Chapters 2—4 focus on multiscale methods that take advantage of the scale separa-
tion hypothesis stemming from the infinitesimality of fine-scale features compared with the
coarse-scale problem. The issue of how to systematically reduce fine-scale information and to
characterize it against available experimental data is detailed in Chapter 4. Multiscale design
software, which incorporates the aforementioned building blocks, including continua upscal-
ing, model reduction, experimental characterization, and material optimization, is described
in Chapter 6. The software can be used in conjunction with one of the commercial macro-
scopic solvers, ANSYS, ABAQUS, or LS-DYNA, or, alternatively, with the built-in coarse-
scale solver, MDS-Macro. Use of this software provides a valuable hands-on experience to
both students and practitioners. Chapters 2, 4, and 6 represent the core course material, which
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is recommended for one-quarter or full semester courses when supplementary material is
used. A link between upscaling methods and the exact solution of the fine-scale problem is
provided within the framework of the multigrid methods in Chapters 2 and 3 for continua and
discrete media, respectively. Chapter 3, which details upscaling of atomistic media, is self-
contained and can be taught independently of the core course material in Chapters 2, 4, and 6.
Chapter 5, which is intended for an advanced audience, describes advanced multiscale and
model reduction methods that are free of scale separation hypothesis.

Reference

[1] http://multiscale.biz.
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Introduction to Multiscale
Methods

1.1 The Rationale for Multiscale Computations

Consider a textbook boundary value problem that consists of equilibrium, kinematical, and
constitutive equations together with essential and natural boundary conditions. These equations
can be classified into two categories: those that directly follow from physical laws and those
that do not. A constitutive equation demonstrates a relation between two physical quantities
that is specific to a material or substance and does not follow directly from physical laws. It
can be combined with other equations (equilibrium and kinematical equations, which do
represent physical laws) to solve specific physical problems.

In other words, it is convenient to label all that we do not know about the boundary value
problem as a constitutive law (a term originally coined by Walter Noll in 1954) and designate
an experimentalist to quantify the constitutive law parameters. While this is a trivial exercise
for linear elastic materials, this is not the case for anisotropic history-dependent materials well
into their nonlinear regime. In theory, if a material response is history-dependent, an infinite
number of experiments would be needed to quantify its response. In practice, however, a hand-
ful of constitutive law parameters are believed to “capture” the various failure mechanisms
that have been observed experimentally. This is known as phenomenological modeling, which
relates several different empirical observations of phenomena to each other in a way that is
consistent with fundamental theory but is not directly derived from it.

An alternative to phenomenological modeling is to derive constitutive equations (or directly,
field quantities) from finer scale(s) where established laws of physics are believed to be better
understood. The enormous gains that can be accrued by this so-called multiscale approach
have been reported in numerous articles [1,2,3,4,5,6]. Multiscale computations have been
identified (see page 14 in [7]) as one of the areas critical to future nanotechnology advances.

Practical Multiscaling, First Edition. Jacob Fish.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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For example, the FY2004 US$3.7 billion National Nanotechnology Bill (page 14 in [7]) states
that “approaches that integrate more than one such technique (...molecular simulations,
continuum-based models, etc.) will play an important role in this effort.”

One of the main barriers to such a multiscale approach is the increased uncertainty and
complexity introduced by finer scales, as illustrated in Figure 1.1. As a guiding principle for
assessing the need for finer scales, it is appropriate to recall Einstein’s statement that “the
model used should be the simplest one possible, but not simpler.” The use of any multiscale
approach has to be carefully weighed on a case-by-case basis. For example, in the case of
metal matrix composites (MMCs) with an almost periodic arrangement of fibers, introducing
finer scales might be advantageous since the bulk material typically does not follow normality
rules, and developing a phenomenological coarse-scale constitutive model might be challeng-
ing at best. The behavior of each phase is well understood, and obtaining the overall response
of the material from its fine-scale constituents can be obtained using homogenization. On the
other hand, in brittle ceramic matrix composites (CMCs), the microcracks are often randomly
distributed and characterization of their interface properties is difficult. In this case, the use of
a multiscale approach may not be the best choice.

Multiscale Science and Engineering is a relatively new field [8,9] and, as with most new tech-
nologies, began with a naive euphoria (Figure 1.2). During the euphoria stage of technology
development, inventors can become immersed in the ideas themselves and may overpromise,
in part to generate funds to continue their work. Hype is a natural handmaiden to overpromise,
and most technologies build rapidly to a peak of hype [10].

For instance, early success in expert systems led to inflated claims and unrealistic expec-
tations. The field did not grow as rapidly as investors had been led to expect, and this trans-
lated into disillusionment. In 1981 Feigenbaum ez al. [11] reckoned that although artificial
intelligence (AI) was already. 25 years old, it “was a gangly and arrogant youth, yearning for



