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Preface

This book is based on my published research on deriving computationally efficient equations
of motion of multibody systems with rotating, flexible components. It reflects my work of
over thirty-five years done mostly at Lockheed Missiles & Space Company, and also at
Martin Marietta and Northrop Corporations. The cover of the book depicts two examples of
flexible multibody systems: the Galileo spacecraft, which was sent to Jupiter, with its rotating
antenna dish on an inertially-fixed base with a deployed truss, and a helicopter in flight. Other
examples of multibody systems, apart from the human body itself, are robotic manipulators,
a space shuttle deploying a tethered subsatellite, and a ship reeling out a cable to a vehicle
doing sea floor mine searches. Formulation of equations of motion is the first step in their
simulation-based design.

In this book, I choose to use Kane’s method of deriving equations of motion, for two reasons:
efficiency in reducing labor of deriving the equations, and simplicity of the final equations due
to a choice of variables that the method allows. However, the contribution of the book goes
beyond a direct formulation of Kane’s equations to more computationally efficient algorithms
like block-diagonal and order-n formulations. Another major contribution of this book is in
compensating for errors of premature linearization, inherent with the use of vibration modes
in large overall motion problems, by using geometric stiffness due to inertia loads.

A highlight of this book is the application of the theory to complex problems. In Chapter 1,
I explain Kane’s method, first with a simple example and then by applying it to a realistic
problem of the dynamics of a three-axis controlled spacecraft with fuel slosh. Presented
separately are Kane’s method of direct linearization of equation of motion and a method
of a posteriori compensation for premature linearization by adding geometric stiffness due
to inertia loads; in the Appendix, a guideline for choosing variables that simplify equations
of motion is provided. In Chapter 2, Kane’s method is used to derive nonlinear dynamical
equations for tethered satellite deployment, station-keeping and retrieval, and a problem of
impact dynamics of a nose cap during ejection of a parachute for recovery of a booster
launching a satellite. The next two chapters cover large overall motion of beams and plates that
illustrate the application of Kane’s method of direct linearization. Chapter 5 gives a derivation
of equations of large overall motion of an arbitrary flexible body, with a method of redeeming
prematurely linearized equations by adding motion-induced geometric stiffness. Chapter 6
incorporates the motion-induced geometric stiffness into the dynamics of a system of flexible
bodies in large overall motions. Chapter 7 is a review material from structural dynamics,
based mainly on the book by Craig, with some additional work on mode selection done at
Lockheed. Chapter 8 produces an algorithm for dynamical equations, with block-diagonal
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mass matrices, used for the Hubble and Next Generation Space telescopes, and to systems
with and without structural loops, comparing results with test data for an antenna deployment.
Chapter 9 illustrates the power of efficient motion variables in a block-diagonal algorithm,
treating multiple loops. Chapter 10 simplifies the block-diagonal formulation to an order-n
method for a system of spring-connected rigid rods, to simulate large bending of beams in
large overall motion, comparing results with the finite element method; a Fortran code for the
formulation is in Appendix B of this book. Chapter 11 uses a variable-n order-n algorithm
for deploying a boom from a spacecraft, and a cable from a ship to an underwater vehicle.
Chapter 12 covers flexible rocket dynamics.

This book is for readers with backgrounds in rigid body dynamics and structural dynamics.
In writing it I was helped by Prof. Paul Mitiguy at Stanford (on efficient variables), Prof. Arun
Misra at McGill (on formation flying of tethered satellites), and Dr. John Dickens of Lockheed
(on modal truncation vectors and geometric stiffness issues). I thank my Lockheed colleagues:
Mark Lemak, who developed a multibody dynamics code from the algorithms given here and
produced the results in Chapters 6-9; and David Levinson, whose high praise was a booster for
me to write this book. John Dickens provided the structural dynamics codes. Dr. Ron Dotson,
a manager at Lockheed, gave me a free hand to develop the algorithms. Dr. Tushar Ghosh of
L-3 Communications advised me on current practice, and meticulously edited the book.
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1

Derivation of Equations of Motion

1.1 Available Analytical Methods and the Reason for Choosing
Kane’s Method

In this book we derive equations of motion for a system of rigid and flexible bodies undergoing
large overall motion. Various choices of analytical methods are available for this task, such
as Newton-Euler methods, and methods based on D’Alembert’s principle together with the
principle of virtual work, Lagrange’s equations, Hamilton’s equations, Boltzmann-Hamel
equations, Gibbs equations, and Kane’s equations. The most recent among these is Kane’s
method, based on a paper published in 1965 by Kane and Wang [1], and the method was
given detailed exposition, with extensive applications, by Kane [2], Kane and Levinson [3],
and Kane, Likins, Levinson [4]. Likins [5] also did a comparison of these various analytical
methods for deriving equations of motion in a comprehensive report that also considered
applications to flexible spacecraft.

In a survey paper, Kane and Levinson [6] took up a fairly complex example, of an 8 degree-
of-freedom (dof) system consisting of a spacecraft containing a four-bar linkage to show the
difference between seven analytical methods. To summarize, their conclusion was that (a)
D’ Alembert’s method is less laborious than a method using conservation of momentum, with
both requiring introduction and elimination of constraint forces; (b) Lagrange’s equations
require no introduction of workless constraint forces, but the labor to derive the equations
is prohibitive; (c) Lagrange’s equations in quasi-coordinates use variables that simplify the
equations of motion but require order-n> computations for certain terms for an n-dof system,
and the process of getting the final equations is formidable; (d) Gibbs equations is somewhat
better, using quasi-coordinates but requiring one to form terms with n> computations for an n-
dof system. With an exposition of Kane’s method, they showed that Kane’s method is superior
to the rest of the methods, on the basis of two crucial considerations: (1) operational simplicity,
meaning reduced labor in the derivation of the equations of motion either by hand or in terms
of computer operations via symbol manipulation; and (2) simplicity of the final form of the
equations, simplicity giving rise to reduction in computational time; simplicity is achievable
depending on whether a method allows a choice of motion variables such as quasi-coordinates,
or what Kane calls generalized speeds. An exposition of Kane’s method is given later.

Flexible Multibody Dynamics: Efficient Formulations and Applications, First Edition. Arun K. Banerjee.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 Flexible Multibody Dynamics

1.2 Kane’s Method of Deriving Equations of Motion

Consider a system of particles and rigid bodies whose configuration in a Newtonian reference
frame N is characterized by generalized coordinates, g,,¢,," - --.q,. Let u,u,, ... u, be
motion variables, called generalized speeds by Kane, introduced as linear combinations of
q1s42» .- q,, where an overdot indicates time derivative, that are kinematical differential
equations of the form,

2 Gt X (i=1,...n) (1.1)

Here W;; and X; are functions of the generalized coordinates and time t, for an n-dof system.
W;; and X; are chosen so that Eq. (1.1) can be uniquely solved for ¢,,4,, ...,4,. Typically
prescribed motion terms appear in X;. The angular velocity of any rigid body and the velocity
of any material point of the system can always be expressed uniquely as a linear function of
the generalized speeds, u|, u, ..., u,. Thus, for a particle P; in a system, Kane [3] has shown
that its velocity in a Newtonian, meaning inertial, reference frame N, defined as the inertial
time-derivative of the position vector of P, from a point O fixed in N, can always be split
in two groups of terms:

N dpom n "
NyPe = ZNV “up+ Nt (1.2)
Here vP‘ Ny P are vector functions of the generalized coordinates, g, ¢, ... ,q,. Kane [3]

calls the Vector, viP*, that is the coefficient of the ith generalized speed u; in Eq. (1.2), the ith
partial velocity of the point P,. Similarly for a rigid body By, the velocity of its mass center
By and the angular velocity of B, in N for a system can always be expressed as

. n B* B*
NyBi = ENvik“i'*‘NV[k
i=I
(1.3)
B _ v N5 Ny B
N . . L
w =Y Y u + M,
i=l

*

k BkN

s B By
Again, Vv, w,“ are vector functions of the
generalized coordinates, and Kane calls the vector Yw?*, the coefficient of u; 1n N w8 Eq.

PAN

is the ith partial velocity of B}, and v

(1.3), the ith partial angular velocity of the body B, in N. Typically, V " Nw in
Egs. (1.2) and (1.3) are remainder terms associated with prescribed velocity and angular
velocity. Partial velocities and partial angular velocities are crucial items in Kane’s method,
and throughout this book we will see their central roles in the formulation of equations of
motion. Once the velocities of points with mass and of mass centers and angular velocities
of rigid bodies are expressed in some vector basis fixed in By, inertial acceleration of those
points and mass centers, as well as angular acceleration of those bodies, can be obtained by
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differentiating these vector expressions in a Newtonian reference frame N. This is done by
appealing to the rule for differentiation of a vector in two reference frames, expressed as:

_ NgNyPie  BigNyPe

NP N By o NP,
a'k = = + 7wtk X Tk
dt dt
* NdeB; BdevBl: +
NaBi = - + N wBe x NvBi (1.4)
dr dt
B,
NaBk _ NdeBk _ deka
dt dt

The first equality indicates a definition, and the second equality sign provides a basic kinematic
relationship between differentiation of a vector in two reference frames, and it assumes that
the frame B, or equivalently, rigid body By, is different from frame N.

Kane’s equations of motion are stated in terms of what Kane calls generalized inertia forces
and generalized active forces. For an n-dof system consisting of NR number of rigid bodies
and NP number of particles, the ith generalized inertia force is defined by the following
dot-products with the ith partial velocities and partial angular velocities:

B n B B./B* , . yBi/B’ : B
Fr=-% [mMa7 Vv +d iB NoBi + VB x 1875 NwBiy N
J=1
(1.5)
NP b NP
= N j s
— ijNa J o Ny (i=1,..,n)

=

Here N aBJ . a¥/ are the Newtonian frame accelerations of the mass centers B* of the body B;
j Y5

and particle P;, respectively; 1275 is the inertia dyadic of B; about B;‘; and N &P is the angular
acceleration of B; in N. The ith generalized active force for this n-dof system of NR number
of rigid bodies and NP number of particles is given by the following dot-products with partial
velocities and partial angular velocities:

NR Lo N NP »
FFZ[FB"-NV;’+TBf'Nw,-’>]+ZF"i-Nv,-’ i=1,....n) (16

j=1 j=1

Here the resultant of all contact and body forces on body B; are FB; at Bj’.k together with a

couple of torque T?, and the resultant of external and contact forces on particle P; is F’i.
Note that all non-working interaction forces are automatically eliminated by taking the sum
in Eq. (1.6) over bodies and particles, with actions and reactions canceling, as generalized
active forces are formed. Some special cases of generalized active force that are covered by
Eq. (1.6) are those due to elastic-dissipative mechanical systems, by “conservative” forces
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derivable from a potential function V(q,,...,q,,t) and dissipative forces from a dissipation
function D(u,, ..., u,).

F{ = ——— — (i=1,...,n) (1.7)

1.2.1 Kane'’s Equations

Kane’s Equations for an n-dof system can now be written by adding up the generalized active
and inertia forces, and setting them equal to zero, as

Fi+F'=0, i=1,...,n or, —-F'=F, i=1,...,n (1.8)

These dynamical equations of motion, together with the kinematical equation of Eq. (1.1) can
be written as two sets of n coupled, nonlinear, differential equations in matrix form:

M(@UU} = (Clg,U, 0} + {F(g,U, 1)}
(1.9)
Wpl{q} = (U - X(q.0)}

Here M(g) is called the nxn “mass matrix,” C(g, U, 1) the nx1 “Coriolis and centrifugal inertia
force matrix,” and F(g, U, 1) the nx1 “generalized force” matrix. Equation (1.9) completely
describes the dynamics of the system. Note that the algebra involved in forming Eqs. (1.5) and
(1.6) can be quite massive for a complex mechanical system, as may be checked by an analyst
deriving equations of motion by hand. That is why a computerized symbol manipulation
code, Autolev, was developed by Levinson and Kane [7] to derive the equations of motion.
Finally, it should be mentioned that Kane had originally [2] called Eq. (1.8) the Lagrange’s
form of D’Alembert’s Principle, because just as Lagrange’s equations can be derived by
dot-multiplying the D’ Alembert force equilibrium equations by the components of virtual
displacement in a virtual work principle, Kane obtains his equations by dot-multiplying the
D’Alembert equilibrium equations by the partial velocities and partial angular velocities, to
represent what may be thought of as a virtual power principle.

1.2.2  Simple Example: Equations for a Double Pendulum

Figure 1.1 shows a planar double pendulum. Consider the links OP, PQ as massless rigid

rods, each of length /, with lumped mass m at the end of each rod acted on only by gravity.

Configuration of the pendulum is defined by two generalized coordinates, g, g5, as shown.
To use Kane’s method we may choose as generalized speeds, following Eq. (1.1):

Mlzfll; M2=q|+qz or {g;}:{uzu_lul} (1.10)

The velocity of P in the Newtonian reference frame N can be written in terms of the angular
velocity of the link OP in N, u;n; (ny being perpendicular to the plane in Figure 1.1) as

NvP = uny x l(cos g n; + sing,n,) = lu;(—sing;n, + cos g;ny) (1.11)
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\\\ ©
;

In N L Q

Figure 1.1 A Planar Double Pendulum.

Here n,n, are unit vectors in N directed downward and to the right, respectively, as shown
in Figure 1.1. The velocity of Q in N is given in terms of the velocity of P in N by

NvQ = NyP 4 u,ny X [[(cos(g, + gp)m, + sin(g, + g5)m,]
' . (1.12)
= nl[—u, sing, — u, sin(q, + q,)] + nyl[u; cos g, + u, cos(q, + g)]
Here u,n4 is the angular velocity in NV of the link PQ. Now we form partial velocities of P and
0, coefficients of generalized speeds, u;, 4, in Egs. (1.11), (1.12) shown in Table 1.1.
Accelerations of P and Q in N are obtained by differentiating the velocity vectors in N:

N P N gNyP . ) ’ .
a = 7 =l[ul(—smq,nl +cosq1n2)+ul(—cosq|n1—smqlnz)] (1.13)
NNy Q
Naf = ddrv =1 [ul(— sing;n; +cosg;n,) + u:f(— cosgn; — sinq1n2)]
+1{i1y [—sin(g; + gy)m, +cos(g; + g5) my]+u3[— cos(q; + g,) m; —sin(g, + g,) my] }

(1.14)

Negatives of the generalized inertia forces in two generalized speeds are formed by
Eq. (1.5):

= F} = ml? [2i; + ity c0s q; — u3 sin g | (1.15)
=¥ = ml’ [ulcosq2+ufsinq2+i42] (1.16)

These equations would be more complex had we chosen u; = ¢;,i = 1, 2. Relative simplicity
of the form of Egs. (1.15), (1.16) is due to an efficient choice of generalized speeds, which

Table 1.1 Partial Velocities for the Double Pendulum Example.

r NvP NvQ
r r

1 [(—sing;n; +cosg;n,) I(—sing,n; +cosqn,)
2 0 l[-sin(g, + g;)m, + cos(g, +g;)m,
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is described later in this chapter’s appendix. The expressions for the generalized active forces
due to gravity on P and Q are obtained via Eq. (1.6).

Flzmgn,-Nvf+mgnl--N ?:—2mglsinql (1.17)

v
F, = mgn, -Nvg+mgnl -NVZQ:—mgl sin(g, + ;) (1.18)
Substitution of Egs. (1.15)—(1.18) in Kane’s equation, Eq. (1.8), yields the dynamical equa-

tions:
mi* [2it; + ity cos g, — 13 sing,| = ~2mglsing, (1.19)

ml* [u, cosq, + u% sing, + 1'42] = —mglsin(q, + g5) (1.20)

These dynamical equations are written in matrix form as:

2mi>  ml?cos g, i 2 . u% 2mglsin g,
mPcosq, mbP ity = (ml° sing,) —uf - mglsinlg, + ;) (1.21)

Note that the multiplier matrix of the column matrix for the derivatives of the generalized
speeds, the so-called mass matrix, is symmetric. This is true for all rigid body systems.
Dynamical equations, Eq. (1.21), together with the kinematical equations, Eq. (1.10), complete
the equations of motion for the double pendulum.

1.2.3  Equations for a Spinning Spacecraft with Three Rotors, Fuel Slosh,
and Nutation Damper

Consider a more complex spacecraft example, for which equations of motion were derived
by the author and reported in Ref. [8]. Figure 1.2 shows a spinning spacecraft with three-axis
control, a nutation damper, and a thruster with thrust fuel sloshing in a tank. The spacecraft is
a gyrostat G, meaning a rigid body with three fixed-axis reaction control rotors W, W,, Wj;
sloshing fuel is represented as a spherical pendulum with a massless rod with an end point
mass mp, and the nutation damper has a point mass my,, at point Q, with (3 being the location
in the spacecraft body G when the nutation damper spring is unstretched. The slosh pendulum
attachment point is located from the mass center G* of G by the position vector z5g;. We show
in Figure 1.3 two angles ¥, ¥, to orient the slosh pendulum, and let o denote the nominal
length plus the elastic stretch of the spring at the nutation damper of mass mg,. This describes

a 12 dof system, for which we define the generalized speeds, u;, (i = 1, ..., 12), as follows:
w =" g, i=1,23 (1.22)
u3+i=NwG'gi, l=1,2,3 (]23)
ugp;=CwW.g, i=1273 (1.24)
Ugy; = Wi, i= ],2 (]25)

Upp = G (126)



