Wireless Communications Security

Solutions for the Internet of Things

WILEY

Wireless Communications Security Solutions for the Internet of Things

Jyrki T. J. Penttinen, Giesecke & Devrient, USA

The development of the wireless communications environment, especially as related to security, has been relatively stable compared to the issues of the fixed Internet. Nevertheless, along with the enhanced functionalities of smart devices, networks and applications, the level of malicious attacks has increased considerably. It can be estimated that security attacks, distribution of viruses and other malicious activities increase in the wireless environment along with the higher number of users. Not only are payment activities, person-to-person communications and social media utilization under constant threat, but furthermore, one of the strongly increasing security risks is related to Machine-to-Machine (M2M) communications. This book describes the current and most probable future wireless security solutions. The focus is on the technical discussion of existing systems and new trends like the Internet of Things (IoT). It also discusses existing and potential security threats, presents methods for protecting systems, operators and end-users, describes security systems attack types and the new dangers in the ever-evolving Internet. The book functions as a practical guide describing the evolvement of the wireless environment, and how to ensure the fluent continuum of the ne 9781119084396 电子与通信技术ng the potential risks in network security. 分类码:TN

Discusses existing and potential s

• Presents methods for protecting syste 1 库 perators and end-use

- Describes security systems attack types and the new dangers in the ever-evolving Internet
- Provides useful reference material for operators, equipment manufacturers, service providers, standardization groups and alliances

Cover image: Courtesy of the author

www.wiley.com

Penttinen

WILEY

WIRELESS COMMUNICATIONS SECURITY

SOLUTIONS FOR THE INTERNET OF THINGS

Jyrki T. J. Penttinen

Giesecke & Devrient, USA

WILEY

This edition first published 2017 © 2017 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781119084396

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India Printed and bound in Malaysia by Vivar Printing Sdn Bhd

10 9 8 7 6 5 4 3 2 1

WIRELESS COMMUNICATIONS SECURITY

About the Author

Dr **Jyrki T. J. Penttinen**, the author of this *Wireless Communications Security* book, started working in the mobile communications industry in 1987 evaluating early stage NMT-900, DECT and GSM radio network performance. After having obtained his MSc (EE) grade from Helsinki University of Technology (HUT) in 1994, he continued with Telecom Finland (Sonera and TeliaSonera Finland) and with Xfera Spain (Yoigo) participating in 2G and 3G projects. He also established and managed the consultancy firm Finesstel Ltd in 2002–03 operating in Europe and the Americas, and afterwards he worked with Nokia and Nokia Siemens Networks in Mexico, Spain and the United States in 2004–2013. During his time working with mobile network operators and equip-

ment manufacturers, Dr Penttinen was involved in a wide range of operational and research activities performing system and architectural design, investigation, standardization, training and technical management with special interest in the radio interface of cellular networks and mobile TV such as GSM, GPRS/EDGE, UMTS/HSPA and DVB-H. Since 2014, in his current Program Manager's position with Giesecke & Devrient America, Inc, his focus areas include mobile and IoT security and innovation.

Dr Penttinen obtained his LicSc (Tech) and DSc (Tech) degrees in HUT (currently known as Aalto University, School of Science and Technology) in 1999 and 2011, respectively. In addition to his main work, he is an active lecturer, has written dozens of technical articles and authored telecommunications books, the recent ones being *The LTE-Advanced Deployment Handbook* (Wiley, 2016), *The Telecommunications Handbook* (Wiley, 2015) and *The LTE/SAE Deployment Handbook* (Wiley, 2011). More information about his publications can be found at www.tlt.fi.

Preface

This Wireless Communications Security book summarizes key aspects related to radio access network security solutions and protection against malicious attempts. As such a large number of services depend on the Internet and its increasingly important wireless access methods now and in the future, proper shielding is of the utmost importance. Along with the popularization of wireless communications systems such as Wi-Fi and cellular networks, the utilization of the services often takes place via wireless equipment such as smartphones and laptops supporting short and long range radio access technologies. Threats against these services and devices are increasing, one of the motivations of the attackers being the exploitation of user credentials and other secrets to achieve monetary benefits. There are also plenty of other reasons for criminals to attack wireless systems which thus require increasingly sophisticated protection methods by users, operators, service providers, equipment manufacturers, standardization bodies and other stakeholders.

Along with the overall development of IT and communications technologies, the environment has changed drastically over the years. In the 1980s, threats against mobile communications were merely related to the cloning of a user's telephone number to make free phone calls and eavesdropping on voice calls on the unprotected radio interface. From the experiences with the relatively poorly protected first-generation mobile networks, modern wireless communications systems have gradually taken into account security threats in a much more advanced way while the attacks are becoming more sophisticated and involve more diversified motivations such as deliberate destruction of the services and ransom-type threats. In addition to all these dangers against end-users, security breaches against the operators, service providers and other stakeholder are on the rise, too. In other words, we are entering a cyber-world, and the communications services are an elemental part of this new era.

The Internet has such an integral role in our daily life that the consequences of a major breakdown in its services would result in chaos. Proper shielding against malicious attempts requires a complete and updated cyber-security to protect the essential functions of societies such as bank institutes, energy distribution and telecommunications infrastructures. The trend related to the Internet of Things (IoT), with estimations of tens of billions of devices being taken into use within a short time period, means that the environment is becoming even more

xiv Preface

challenging due to the huge proportion of the cheaper IoT devices that may often lack their own protection mechanisms. These innocent-looking always-connected devices such as intelligent household appliances – if deployed and set up improperly – may expose doors deeper into the home network, its services and information containers, and open security holes even further into the business networks. This is one of the key areas in modern wireless security preparation.

As my good friend Alfredo so well summarized, the Internet can be compared to nuclear power; it is highly useful while under control, but as soon as security threats are present, it may lead to major disaster. Without doubt, proper protection is thus essential. This book presents the solutions and challenges of wireless security by summarizing typical, currently utilized services and solutions, and paints the picture for the future by presenting novelty solutions such as advanced mobile subscription management concepts. I hope you find the contents interesting and relevant in your work and studies and obtain an overview on both the established and yet-to-be-formed solutions of the field. In addition to this book, the contents are available in eBook format, and you can find additional information and updates from the topics at www.tlt.fi, which complement the overall picture of wireless security. As has been the case with my previous books published by Wiley, I would be glad to receive your valuable feedback about this Wireless Communications Security book directly via my email address: jyrki.penttinen@hotmail.com.

Jyrki T. J. Penttinen Morristown, NJ, USA

Acknowledgements

It has been a highly interesting task to collect all this information about wireless security aspects into a single book. I reckon many of the presented solutions tend to develop extremely fast as the threats become increasingly sophisticated and innovative. The challenge is, of course, to maintain the relevancy of the written material. It is perhaps equally difficult for the stakeholders to ensure proper shielding of the wireless communications networks, devices, mobile apps and services along with all the advances in consumer and machine-to-machine domains – not forgetting the overall development of the Internet of Things (IoT), which is currently experiencing major interest. Even so, I believe that the foundations are worth describing in a book format, while the latest advances of each presented field can be checked via the identified key references and root sources of information.

An important part of this book, that is, describing the basics, is something I have been involved with throughout my career when I was working with mobile network operators as well as network and device vendors, while the rest of the contents complete the picture by presenting the most recent advances such as embedded SIM and respective subscription management which will be highly relevant in the near future for the most dynamic ways of utilizing consumers' mobile and companion devices as well as the ever growing amount of IoT equipment. I thank all my good colleagues I have had the privilege to work with and to exchange ideas related to mobile security. I want to especially mention the important role of Giesecke & Devrient in offering me the possibility to focus on the topic in my current position.

I warmly thank the Wiley team for the professional work and firm yet tender ways for ensuring the book project and schedules advanced according to the plans. Special thanks belong to Mark Hammond, Sandra Grayson, Tiina Wigley and Nithya Sechin, as well as Tessa Hanford, among all the others who helped me to make sure this book was finalized in good order.

I also want to express my warmest gratitude to the Finnish Association of Non-fiction Writers for their most welcomed support.

Finally, I thank Elva, Stephanie, Carolyne, Miguel, Katriina and Pertti for all their support.

Jyrki T. J. Penttinen Morristown, NJ, USA

Abbreviations

3DES Triple-Data Encryption Standard 3GPP 3rd Generation Partnership Program

6LoWPAN IPv6 Low power Wireless Personal Area Network AAA Authentication, Authorization and Accounting

AAS Active Antenna System
ACP Access Control Policy
ADF Application Dedicated File
ADMF Administration Function

ADSL Asymmetric Digital Subscriber Line

ADT Android Developer Tool

AES Advanced Encryption Standard
AF Authentication Framework

AID Application ID

AIDC Automatic Identification and Data Capture

AIE Air Interface Encryption

AK Anonymity Key

AKA Authentication and Key Agreement
ALC Asynchronous Layered Coding
AMF Authenticated Management Field
AMI Advanced Metering Infrastructure
AMPS Advanced Mobile Phone System

ANDSF Access Network Discovery and Selection Function

ANSI American National Standards Institute

AOTA Advanced Over-the-Air

AP Access Point

AP Application Provider

APDU Application Protocol Data Unit API Application Programming Interface

AR Aggregation Router

ARIB Association of Radio Industries and Businesses

Abbreviations xvii

AS Access Stratum

AS Authentication Server

ASIC Application-Specific Integrated Circuit
ASME Access Security Management Entity

ASN.1 Abstract Syntax Notation One

ATCA Advanced Telecommunications Computing Architecture

ATR Answer to Reset

ATSC Advanced Television Systems Committee

AuC Authentication Centre
AUTN Authentication Token
AV Authentication Vector
AVD Android Virtual Device

BAN Business/Building Area Network

BCBP Bar Coded Boarding Pass
BCCH Broadcast Control Channel

BE Backend

BGA Ball Grid Array

BIN Bank Identification Number
BIP Bearer-Independent Protocol
BLE Bluetooth, Low-Energy

BM-SC Broadcast – Multicast Service Centre

BSC Base Station Controller
BSP Biometric Service Provider

BSS Billing System

BSS **Business Support System** BTS Base Transceiver Station C2Command and Control CA Conditional Access CA Carrier Aggregation CA Certificate Authority CA Controlling Authority CAT Card Application Toolkit

CAT_TP Card Application Toolkit Transport Protocol
CAVE Cellular Authentication and Voice Encryption

CB Cell Broadcast

CBEFF Common Biometric Exchange Formats Framework

CC Common Criteria
CC Congestion Control
CCM Cond Content Management

CCM Card Content Management

CCMP Counter-mode Cipher block chaining Message authentication code Protocol

CCSA China Communications Standards Association

CDMA Code Division Multiple Access

CEIR Central EIR

CEPT European Conference of Postal and Telecommunications Administrations

CFN Connection Frame Number

CGN Carrier-Grade NAT

xviii Abbreviations

CHV Chip Holder Verification

CI Certificate Issuer
CK Cipher Key
CL Contactless

CLA Class of Instruction CLF Contactless Frontend

CLK Clock

CMAS Commercial Mobile Alert System
CMP Certificate Management Protocol

CN Core Network

CoAP Constrained Application Protocol
CoC Content of Communication

CoC Content of Communication
CPU Central Processing Unit

CS Circuit Switched

CSFB Circuit Switched Fallback
CSG Closed Subscriber Group
CSS7 Common Signaling System
CVM Cardholder Verification Method

DBF Database File
DD Digital Dividend

DDoS Distributed Denial-of-Service

DE Data Element

DES Data Encryption Standard

DF Dedicated File
DFN Dual-Flat, No leads

DHCP Dynamic Host Configuration Protocol

DL Downlink

DM Device Management DM Device Manufacturer DMO Direct Mode Operation DNS Domain Name System DoS Denial-of-Service DPA Data Protection Act DPI Deep Packet Inspection Digital Rights Management DRM Data Synchronization DS DSS Data Security Standard

DSSS Direct Sequence Spread Spectrum
DTLS Datagram Transport Layer Security
DTMB Digital Terrestrial Multimedia Broadcast

DVB Digital Video Broadcasting
EAL Evaluation Assurance Level
EAN Extended Area Network

EAP Extensible Authentication Protocol

EAPoL Extensible Authentication Protocol over Local Area Network

EAP-TTLS Extensible Authentication Protocol-Tunneled Transport Layer Security

Abbreviations xix

ECASD eUICC Controlling Authority Secure Domain

eCAT Encapsulated Card Application Toolkit

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECO European Communications Office

EDGE Enhanced Data Rates for Global Evolution

EEM Ethernet Emulation Mode

EEPROM Electrically Erasable Read-Only Memory

EF Elementary File

EGAN Enhanced Generic Access Network

EID eUICC Identifier

EIR Equipment Identity Register

E-MBS Enhanced Multicast Broadcast Service

EMC Electro-Magnetic Compatibility

EMF Electro-Magnetic Field

EMI Electro-Magnetic Interference EMM EPS Mobility Management EMP Electro-Magnetic Pulse

eNB Evolved Node B

EPC Enhanced Packet Core
EPC Evolved Packet Core
EPS Electric Power System
EPS Enhanced Packet System
ERP Enterprise Resource Planning

ERTMS European Rail Traffic Management System

eSE Embedded Security Element

eSIM Embedded Subscriber Identity Module

ESN Electronic Serial Number

ESP Encapsulating Security Payload

ETSI European Telecommunications Standards Institute

ETWS Earthquake and Tsunami Warning System
eUICC Embedded Universal Integrated Circuit Card

EUM eUICC Manufacturer E-UTRAN Enhanced UTRAN

EV-DO Evolution Data Only/Data Optimized

FAC Final Approval Code FAN Field Area Network

FCC Federal Communications Commission

FDD Frequency Division Multiplex

FDT File Delivery Table FEC Forward Error Correction

FF Form Factor

FICORA Finnish Communications Regulatory Authority

FID File-ID

FIPS Federal Information Processing Standards
FLUTE File Transport over Unidirectional Transport

xx Abbreviations

FM Frequency Modulation

FPGA Field Programmable Gate Array
GAA Generic Authentication Architecture
GBA Generic Bootstrapping Architecture
GCSE Group Communication System Enabler

GEA GPRS Encryption Algorithm

GERAN GSM EDGE Radio Access Network GGSN Gateway GPRS Support Node GMSK Gaussian Minimum Shift Keying

GoS Grade of Service GP GlobalPlatform

GPRS General Packet Radio Service
GPS Global Positioning System
GRX GPRS Roaming Exchange

GSM Global System for Mobile Communications

GSMA GSM Association

GPRS Tunnelling Protocol GTP **GUI** Graphical User Interface Home Area Network HAN HCE Host Card Emulation HCI Host Controller Interface HE Home Environment HF High Frequency **HFN** Hyperframe Number

HIPAA Health Insurance Portability and Accountability Act

HLR Home Location Register

HNB Home Node B

HRPD High Rate Packet Data
HSPA High Speed Packet Access
HSS Home Subscriber Server

HTTPS HTTP Secure
HW Hardware
I/O Input/Output

I²C Inter-Integrated Circuit
IAN Industrial Area Network

IANA Internet Assigned Numbers Authority
IARI IMS Application Reference ID

ICAO International Civil Aviation Organization

ICC Integrated Circuit Card
ICCID ICC Identification Number
ICE In Case of Emergency
ICE Intercepting Control Element
ICIC Inter Cell Interference Control

ICT Information and Communication Technologies

IDE Integrated Development Environment
IDEA International Data Encryption Algorithm

Abbreviations xxi

ID-FF Identity Federation Framework

IDM Identity Management IDS Intrusion Detection System

ID-WSF Identity Web Services Framework

IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IF Intermediate Frequency

IK Integrity Key

IKE Internet Key Exchange

IMEI International Mobile Equipment Identity

IMEISV IMEI Software Version IMS IP Multimedia Subsystem

IMSI International Mobile Subscriber Identity

IOP Interoperability Process
IoT Internet of Things
IOT Inter-Operability Testing

IP Internet Protocol

IPS Intrusion Prevention System

IPSec IP Security IR Infrared

IRI Intercept Related Information ISD Issuer Security Domain

ISDB-T Terrestrial Integrated Services Digital Broadcasting

ISD-P Issuer Security Domain Profile ISD-R Issuer Security Domain Root

ISIM IMS SIM

ISO International Organization for Standardization

ISOC Internet Society

ITSEC Information Technology Security Evaluation Criteria

ITU International Telecommunications Union IWLAN Interworking Wireless Local Area Network

JBOH JavaScript-Binding-Over-HTTP
JTC Joint Technical Committee

K User Key

KASME Key for Access Security Management Entity

KDF Key Derivation Function

LA Location Area
LAN Local Area Network
LBS Location Based Service
LCT Layered Coding Transport
LEA Law Enforcement Agencies

LEAP Lightweight Extensible Authentication Protocol

LEMF Law Enforcement Monitoring Facilities

LF Low Frequency

LI Legal/Lawful Interception