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Preface

Due to their electronic structure and optical properties, semiconduc-
tors are the basic materials of solid-state electronics. Among semicon-
ductor materials, crystalline (polycrystalline) inorganic semiconductor
alloys form the majority of the materials used in device applications.
The doped elemental semiconductors and doped semiconductor com-
pounds such as, correspondingly, doped Si or doped GaAs, are also sub-
stitutional semiconductor alloys. Moreover, a number of the
semiconductor compound-rich alloys containing dielectric compounds
are semiconducting materials.

Over the last few years, progress in the technologies of epitaxial growth
led to significant extension of the class of inorganic semiconductor alloys.
It is expected that this extension will be continued in the next years. In
connection with this trend, the prediction of the characteristics and prop-
erties of possible semiconductor materials becomes very important. In
addition, the materials suitable to fabricate solid-state electronic devices
should be in the thermodynamically stable or metastable state. Only
then can the characteristics of the devices be fixed for a long period of
time. Therefore, the development of methods to determine the thermody-
namic stability of semiconductor alloys with respect to phase transforma-
tions is very important.

The electronic structure and optical properties are considered in great
detail in a number of books devoted to the physics of semiconductors. The
thermodynamic properties and characteristics (e.g., the thermodynamic
stability with respect to the different phase transformations, clustering,
and distortions of the crystal structure) are also essential for device fabri-
cation. However, these and other thermodynamic quantities, characteris-
tics, and properties are normally represented only briefly in the available
literature. Some models and their applications suitable for the consider-
ation of the thermodynamic properties of semiconductor alloys can be
found, for example, in Refs [1-5] and in the books devoted to statistical
mechanics and statistical thermodynamics.

This book is for solid-state physicists, semiconductor materials scien-
tists, and specialists who need the application of theoretical methods
and models, such as the use of the lattice systems, the cluster variation
method, regular solutions, and the valence force field models to analyze
the experimental results and to predict the properties and characteristics
of possible semiconductor alloys. Both graduate and postgraduate
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students of solid-state physics and materials science may use this book to
study the methods of statistical physics in solid-state physics as well
as the regular solution model and the valence force field model and their
applications to the description of semiconductor alloys.

The topics presented in this book include the types of inorganic crystal-
line semiconductors, the basic concepts and postulates of equilibrium ther-
modynamics and equilibrium statistical physics, the regular solution
model and its applications considered by using the cluster variation
method, and the valence force field model with its applications. Elemental
semiconductors, semiconductor compounds, and substitutional alloys of
such semiconductors are treated in Chapter 1. The most important parts
of this chapter are devoted to the alloys of binary semiconductor com-
pounds. The established types of the spontaneously ordered alloys with
the zinc blende and wurtzite structures are described. It is shown that in
alloys with two mixed sublattices, a one-to-one correspondence is absent
between the elemental composition and concentration of chemical bonds.
The basic concepts and the mathematical formalism of equilibrium thermo-
dynamics, as well as main elements of statistical physics, are briefly treated
in Chapter 2. In addition, the Helmholtz and Gibbs free energies of
condensed matter and the separation of the degrees of freedom are pre-
sented. The classical regular solution model is in Chapter 3. High accuracy
in calculation of configurational entropy may be reached by using this
model. The cluster variation method and its different approximations
used to describe the properties and characteristics of the semiconductor
alloys considered as regular solutions are in Chapter 4. Baker’s approach
to providing a simple and systematic way to express configurational en-
tropy is introduced and used in this chapter. Chapter 5 is devoted to the
modified regular solution model to describe the semiconductor alloys of bi-
nary compounds in which the crystal structure consists of two mixed sub-
lattices. A one-to-one correspondence between the elemental composition
and concentration of chemical bonds is absent in such alloys. The character-
istics of such alloys also represented as regular solutions are treated by us-
ing the different approximations of the cluster variation method. It is also
shown that the self-assembled identical tetrahedral clusters should be ther-
modynamically profitable in some semiconductor alloys with the zinc
blende structure. The valence force field model and its applications are pre-
sented in Chapter 6. This model allows analyzing the distortions of the
crystal structure of the mismatched semiconductor alloys at the microscale
level. The estimated internal strain energies of the semiconductor alloys
with the zinc blende and wurtzite structures demonstrate the tendency
to the formation of superstructures. The possible types of superstructures
in the ternary alloys with the zinc blende and wurtzite structures are
described. The models of the discontinuous and continuous order—disorder
phase transitions are presented. The strain energies caused by the
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isoelectronic impurities in the semiconductors with the diamond and zinc
blende structures are derived.

In this book, the terms in parentheses normally are the synonyms
encountered in the literature, and capital and small letters as usual are
related to the absolute and molar quantities, respectively.
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1

Semiconductor Materials

Crystalline inorganic semiconductors are basic materials of solid-
state electronics and, therefore, they are considered in this book. An
inorganic semiconductor can be an elemental semiconductor, a com-
pound, or an alloy. Elemental semiconductors containing only one
chemical element are diamond, Si, Ge, and gray Sn with the diamond
structure. Semiconductor compounds consist of two or more chemical
elements. The composition of the compound may vary within a
composition range called the deviation from stoichiometry or deviation
from the ideal ratio between the numbers of the different chemical el-
ements. Normally, such deviations in semiconductor compounds are
small, and they are the results of the presence of atoms located at the
interstitials or the absence of atoms over the lattice sites. Semiconductor
alloys are mainly substitution alloys in which atoms are arranged over
the lattice sites. Interstitials and the absence of atoms over the lattice
sites also may occur in semiconductor alloys as defects of the crystal
structure. The importance of the consideration of substitutional semi-
conductor alloys results from the fact that they are basic materials in the
device applications.

The compressibility of crystalline semiconductor alloys is normally
very small. Therefore, the changes of the lattice parameters of semi-
conductors are significant only at high pressures. The high-pressure ef-
fects are not considered in this book. Hence, through the book it is
supposed that the lattice parameters of semiconductors do not depend on
pressure. Moreover, it is supposed also that the stiffness coefficients of
semiconductors do not depend on temperature and the coefficients of
thermal expansion are equal to zero for the majority of considerations.

1.1 ELEMENTAL SEMICONDUCTORS

Carbon (diamond, C), silicon (Si), germanium (Ge), and gray tin (2-Sn)
are the elemental semiconductors belonging to Group IV of the periodic

Statistical Thermodynamics of Semiconductor Alloys —
http://dx.doi.org/10.1016/B978-0-12-803987-8.00001-0 1 Copyright © 2016 Elsevier Inc. All rights reserved.



2 1. SEMICONDUCTOR MATERIALS

FIGURE 1.1 Elemental semicon-
ductors A" with the diamond structure.
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table. They have the diamond structure (cubic structure). The elementary
cell (unit cell) of the diamond structure is shown in Figure 1.1.

The diamond structure is composed of two equivalent face-centered
cubic lattices displaced from each other by one-quarter of a body diago-
nal. Also, the diamond structure can be represented as a set of regular
tetrahedrons (tetrahedral cells) with atoms in their corners, and 50% of
such tetrahedrons have atoms in their centers. Other tetrahedrons are
empty.

The Bravais lattice of the diamond structure is the face-centered cubic
lattice. Each atom in such a structure has the four nearest neighbors with
the tetrahedral bonding and the twelve next nearest neighbors (the
nearest neighbors in the face-centered cubic lattice). The distance between
the nearest atoms is:

V3
R = Ta,
where 4 is the lattice parameter or length of the edge of the elementary
cell.

1.2 SEMICONDUCTOR COMPOUNDS WITH ZINC
BLENDE STRUCTURE

Binary compounds consisting of atoms belonging to Groups IIl and V
of the periodic table (A™MBY semiconductors) such as BP, BAs, AIP, AlAs,
AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb crystallize with the zinc
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FIGURE 1.2 AB semiconductor
compounds with the zinc blende
structure.
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blende (sphalerite) structure. The elemental cell of the zinc blende
structure is shown in Figure 1.2.

The other A™BY semiconductors such as BN, AIN, GaN, and InN can
be grown with the zinc blende structure in the thermodynamically
metastable state. A"BY! semiconductors BeS, BeSe, BeTe, MgSe, ZnS, ZnSe,
ZnTe, CdS, CdTe, HgSe, and HgTe have the zinc blende structure in the
thermodynamically stable state. The other A"BY! semiconductors MgS,
ZnO, and CdSe can be prepared with the zinc blende structure in the
thermodynamically metastable state. The AVBY compound SiC also may
be grown with the zinc blende structure in the metastable state.

The zinc blende structure is obtained from the diamond structure if
cations are placed into one face-centered cubic sublattice and anions are
allocated into another face-centered cubic sublattice. There are four
atoms of the opposite type placed at the corners of a regular tetrahe-
dron around each atom. Thus, the nearest coordination number z; is
equal to 4 and the next nearest coordination number z; is equal to 12. The
next nearest neighbors are the same type atoms as a central atom. The
Bravais lattice of the zinc blende structure is the face-centered cubic
lattice as well as the Bravais lattice of the diamond structure. All
distances between the nearest atoms in the zinc blende structure are the
same, and given by:

V3

RzTa.
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where 7 is the lattice parameter or length of the edge of the elementary
cell. As well as the diamond structure, the zinc blende structure can be
represented as a set of regular tetrahedrons (tetrahedral cells) with cations
(anions) in their corners and 50% of such tetrahedrons have anions (cat-
ions) in their centers. The other tetrahedrons are empty.

1.3 SEMICONDUCTOR COMPOUNDS WITH
WURTZITE STRUCTURE

A"MBY semiconductors AIN, GaN, and InN crystallize with the wurtzite
structure. A"BY! semiconductors BeO, MgTe, ZnO, CdS, and CdSe also
crystallize with the wurtzite structure in the most stable state. A"BY!
compounds ZnS and ZnSe can be grown with the wurtzite structure in the
thermodynamically metastable state. The A"B"™ semiconductor SiC
crystallizes normally with the wurtzite structure.

The ideal wurtzite structure (Figure 1.3) consists of two hexagonal
close-packed sublattices filled with cations and anions and displaced

from each other by a distance \/éao, where ay is the first lattice parameter

of the ideal hexagonal close-packed sublattice or the distance between the
nearest neighbors in the hexagonal close-packed sublattice in the (0001)

FIGURE 1.3 AB semiconductor
compounds with the wurtzite structure.




